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PREFACE
The title of this work is not, perhaps, a very happy one, but I

cannot think of a better. The intention is to gather together a

number of results on interpolation, finite differences and succes-

sive derivatives which seem to have something in common,

avoiding as far as possible all matter which has appeared in

otherbooks and all matter concerned with formulae in themselves

rather than with their applications. The field is large, and the

length of a tract is strictly limited. Much interesting work of

Polya, Valiron, Carmichael, Bochner, Norlund, Ferrar, de la

Vallee Poussin, R. Lagrange and many others has been omitted

entirely as there was no room to do justice to it. Nor has any-

thing been said about the important branch of function theory

described in Walsh’s recent tract Approximation by jmlynomials

in the complex dom,ain (Paris, J 935). This, though intimately con-

nected with interpolation, belongs to a different order of ideas.

Home of the material has not been published before, in

particular the definition of the order and type of a set of

polynomials (which supersedes the definition of order given

in the writer’s paper 11), substantial parts of Theorems 9, 15,

17, 19 and 20, and the proofs of Theorems 8 and 13.

Since the tract was written an important paper by

A. J. MacIntyre has appeared*, in which the main results of

Chapter V are proved and extended to meromorphio functions

by Picard-Schottky methods.

My thanks are due to Professor E. T. Copson for reading the

proofs and to the staff of the University Press for their excellent

work. Finally I wish to record my gratitude to my father. Pro-

fessor E. T. Whittaker, more especially as his memoir on the

cardinal function was the starting point of my interest in these

matters. j. m. W.
Liverpool

19 July 1935

* “A theorem concerning meromorphic functions of finite order”, Proc,

London Math, 8oc, 39 (1935), 282-294,





INTRODUCTION

§ 1. Preliminary results.

Most of the theorems proved in this work concern integral and

meromorphic functions and a rudimentary knowledge of their

properties will be assumed. For integral functions we need only

the results leading up to the expression of a function of finite

order as a canonical product and the simpler relations connecting

the maximum modulus with the coefficients and maxiinum term

of the Taylor series, in particular the equations

(M)
log log ill (r)

logr
= lim

7i“>cx:'

n log n

log
I

(t„
I

(1*2) a = lim
logM (r) 1

(

lim (0< p<oo)

for the order p and the type a. All this will be found in the first

sixty pages of Valiron’s book (1).

For meromorphic functions it is sufficient to know the first

thirty pages of Nevanlinna (1)—the definition and fundamental

properties of T{r )—and one other result (14),* which in some

ways takes the ])lace of (1*1). This is as follows.

Let K denote the exponent of convergence of the poles of a

meromorphic function /(^), i.e. the lower bound of numbers k

such that S converges. We may siippovse that k is finite.

Take a number h> k and surround each pole with a circle of

radius These circles will now group themselves into

‘"nebulae”, each circle of a nebula having at least one i)oint in

common with some other circle of the nebula, but no point in

common with other nebulae. Corresponding to each nebula there

will be a “pole-cluster” and it can be shown that each pole-

cluster contains only a finite number of poles. The grouping

into pole-clusters may depend on the particular value of h

chosen.

* Numbers without names attached refer to the writer’s papers.

W I F



2 INTRODUCTION

Now group together the terms in the Mittag-Lefiier expansion

off(z), which correspond to the different pole-clusters. We obtain

a series

(1-3) f(z) = g(z)+:£. I

1 (2
- ^o)^ (z-bj)K...(z-

where g^) is an integral function, the summation is over the

pole-clusters, and P{z), Q(z) are polynomials. Write

(
1

-4
)
P {z) — Fq + PyZ + ^ {ix = X(f + Xi + ... + Aj^),

(1-5) P^maxIPil, 8(r) = max
I

P(2
) 1

(|6o|=r),
0<t</t \z\ = r

- log+log"* P
Y-
— log+log+S(/)

1-6 T = lim—
,

T. = hm —1,^,

logr logr

Q (z) is the sum of the first n terms of the Taylor series of

— P (z) (z — • • • (2 — b^.)~^k, n being chosen so that

(1-7) log+ P-f- (r)^n^ log+ P -f Pp (r),

where p (r) denotes the number of poles in
|

2
|

^ r, and A, B are

constants.

If these conditions are satisfied (T3) is called an expression of

/(2 )
in normalform and the result in question is as follows:

Theorem A. If f{z), a meromorphic function of order p, is

expressed in normal form (1-3), then

(
T8) p = max {a, t,k) — max {a,

,
k),

where a is the order of g (
2

)
and k, t, tj are defined above.

The order of apart of the series (1-3) cannot exceed p.

The theorem affords a means of dealing with difficulties which

arise when some of the poles of a meromorphic function are very

close together. Similar difficulties are encountered in interpola-

tion. If ^ 2 ,
... is any set of complex numbers and e^, e^, ...

any set such that
|

e„
|

^ 00
, it is possible to find an integral

function/

(

2 ) such that

(1-9) /(e„) = ^4„ (« = !, 2,..;).
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For there exists an integral function
(f>

(z) with simple zeros at the

e’s, and we may take

(MO) f{z) = (f>{z)

(eJC(2- ej’

the integers
,
Sg

>
• • • being chosen so that the series converges

uniformly in any finite region of the plane. The difficulties arise

when we try to determine the order of/ (z). If some of the e’s are

very close together the order may be high, even if the ^’s are

comparatively small and the e’s tend to infinity rapidly. The

question has been investigated by Borel
(
1 ), Polya (

1 ), Mursi and

Winn
(
1

,
2 ), and MacIntyre and Wilson

(
1 ).



CHAPTER I

SERIES OP POLYNOMIALS

§ 2. Basic sets of polynomials.

Let Po(z), ••• be a set of polynomials. An expression of

the form
(2) + A^p^iz) + ... + App^. (z)

is called a finite linear combination of the polynomials, and the

latter are said to be linearly independent if no such combination

is identically zero unless all the constants Aj. are zero.

If, in addition, every polynomial can be expressed as a finite

linear combination of the given set, we shall say that the poly-

nomials form a basic set. Thus the definition is as follows:

Definition. Polynomials Po{z), Pi{z), ... form a basic set if

every polynoynial can be expressed in one and only one way as a

finite linear combination of them.

A few of the simpler properties of basic sets follow from the

definition without difficulty. For example, ifpQ (z), p^ (z), ... is a

basic set, and Cq
, ,

... are any constants, then

1
,

j

p^i{t)dt, r Pi{t)dl,...
J <^'0 V (‘l

is a basic set; moreover (z), p^' (z), ... form a basic set together

with one additional polynomial (which is identically zero if one

of the given set is a constant).

In order to proceed further it is necessary to recall some pro-

perties of infinite matrices. Let A be a matrix of the form

(2-1) f ttoO OOI «02 •

ftio 011 (112

^20 ^21 ^22

A is said to be row-finite ifeach row contains only a finite number
of non-zero elements. A matrix B which satisfies the equations

AB = I, BA = I,
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where I is the unit matrix,* is called a reciprocal of A. If it only

satisfies the first (second) equation it is called a right-hand (left-

hand) reciprocal. Multiplication of matrices of the form (2-1) is

not in general associative. For example, ifA, B, C are respectively

1-11.'
1
'10 0." 1 0 0."

0 0 0. 110. -1 10.
0 0 0 . oil. 1-11.
• • • • j L • • • • .1

• •
• -

it will be found that

A(BC) = A, (AB)G-O.

It is known, I however, that the multiplication of row-finite

matrices is associative and that in any associative algebra an

element a has a unique reciprocal if it has both a right-hand

reciprocal and a left-hand reciprocal; and, moreover, that a has

a unique two-sided reciprocal in that algebra if it has a unique

reciprocal on one side.

Write

(
2 - 2

)

(2-3)

Vi (
2

) + Vil - + Vi2 2^ • •
. >

Vm Vox Vot

Vio Vii Px'i

V20 Vii V12.

so that P is row-finite. The condition for a basic set is then as

follows (11):

Theorem 1. In order that ••• should form a basic

set it is necessary and sufficient that P should have a row-finite

reciprocal.

In view of the preceding remarks the condition is equivalent

to the statement that there is a unique row-finite matrix II

satisfying the equation

(
24

)
np=i.

* I.e. that in which aa^l, a,^--=0 (i 4=i)* t l^knes (1), 416.
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To show that this condition is necessary, write down the

equations expressing 1, 2
,
2®, ... as linear combinations of^Q(2 ),

say

(2-5) l=7r„(,Po(2) + 7Toi^Il(2) + ...,

(2-6) 2 = 7rioPo(-) + ’TiiPi(2) + --->

Each of these series is finite, so the matrix 11 = is row-finite.

In full (2-5) is

1 =”’00 (i^00 + i>oi^+ ...) 4-77-01 (Pio

+

•••) + •••)

so that, on equating coefficients,

^ ~ '”'00 /^)0 "f 7^01 PlO "f '^02^^20 + • • •

)

( ) =
77-ooPoi + 7b 1 + 7^02 7>2 1 + • • • >

These, together with other equations derived in the same way,

are equivalent to
jjp _ j

Again there cannot be a row-finite matrix R, other than 11,

such that pp _ I

For, if so, let II — R = {a,j}. As not all elements of this matrix

are zero, let there be a non-zero element in, say, the first row of

n — R. Let be the last non-zero element in this row. Now

(n-R)P==o

and so “oof'oo + °^oi /bo + • • • + ^ok Pko —

*^00 /'o( + “oilbf+ • • • + ^oklhi=

the final equation being the last in which the p's are not all zero.

Such an equation exists since P is row-finite. On multiplying

these equations by 1
,
2 , and adding, we get

“ooPo (2) + {z) + .-. + a-okPk (2) =

and this is impossible, since ap^+ O, whereas Po{z), Pi{z), ... are

linearly independent. This completes the proof of the necessity

of the condition.
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To prove its sufficiency, assume the truth of (2-4) and write

„ d TTo; d'^

(i = 0, 1,2,...).

/ is easy to verify that, if/(3) is any polynomial,

/ (2) =Po (2) no/(0) +Pi (2) IIi/(0) + ...,

le series being finite since 11 is row-finite. In general each 11,- is

1 infinite operator, but the question of convergence does not

)me in as yet, since, iff{z) is a polynomial, the series

finite. lii/(b) = (n,/(2))-_„ = 7ro,/(0)-f7Ti,;/'(()) + ...

Thus every polynomial can be expressed in at least one way as

finite linear combination of Po(^)’ Vii^) Now if there is a

dynomial g (
2

)
which can be so expressed in more than one way,

lis must be true of at least one of the ])olynomials 1, 2 . 2“

or, if g (
2

)
is of degree N and 1

,
2

,
. .

. ,
2 ' are all only express! ble

i one way, then 2 -' must be expres.sil)le in more than one way.

hus there would be more than one set of equations like (2-5),

!-G). Each such .set would lead to a row-finite matrix 11 satis-

'ing (2-4), and this is contrary to hypothesis.

Basic sets can be classified by means of a function U {>1 )

3fined as

(2-7) the number of gmlynomials Po{z), (
2 ), ... of degree less

an n.

The condition that the representation of an arbitrary poly-

amial is to be unique shows that the membei’s of a l)asic set must

B linearly independent in the finite sense, and this clearly

aphes that

(2-8) U{n)^n (n^l).

The most common case is

(2-9) U {n) = n {n^l),

s.
(
2 ) is of degree n. A set of polynomials satisfying (2-9) will

e called a simple set. Such a set is necessarily a basic set. All the

rdinary kinds of polynomials, e.g. those of Legendre, Laguerre,

[ermite, Bernoulli, form simple sets.
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Failing (2-9), it may be that

(2- 10) U =
,
for an infinite sequence

A basic set with this property will be called a reqidar set. It is easy

to see that any set of linearly independent ])olynoinials satisfying

(2- 10) is regular.

In the case of a general basic set nothing can be said about

U {n) except that it satisfies (2-8) and is an increasing function

tending to infinity. For it can be shown that U («) can increase

arbitrarily slowly.

Basic sets of ojterators. Again, let

^ 1

1

^
( 2

- 11
)

11
;
— TTQj + (^• = 0

,
1 , 2 ,...)

be any set of operators and let

(2-12) n=r
77oo -n-,,, 7r„2 .

'^11 ^12

^20 ^21 ^22 •

be called their matrix. (Note that the coefficients ttj,- associated

with a particular 11,- are in the same cohimn of the matrix, whereas

the coefficients associated with a particular polynomial p,- (z)

are in the same row of P.) It is often convenient to speak of

Ho/W, lIi/(0), ... as operators ; e.g. the matrix of the operators

/(()), /'(i), .r(2), ...

1 0 0 0

(» 1 0 0

0 2 2 0

0 :i 12 0

since /' ( 1 )
=/' (0) + /" (0) + 1,

/"' (0) + . . . , etc.

Oq, n^, ... will be said to form a basic set of operators if they are

associated in the maimer described above with a basic set of



SERIES OF POLYNOMIAES i)

polynomials. If the latter set is simple, or regular, the set of

operators will be said to he sim])le. or regular.

The condition that a set of ojierators be basic follows from

Theorem 1.

Ljoi . In order that IIo , Hi , . . . shouldform a basic set of operators,

it is necessary and sufficient that their matrix 11 should be rou'-Jiuite

and have a row-finite reciprocal.

The series

(2-13) Po(2)l[„/(0) + p,(~)ri, /(()) + ...

will be called the associated basic series. It has been seen that it

represents all polynomials.

lieyular sets of polynomials and. operators. A basic set of ])oly-

nomials has been defined to be regular if

U (?i^) = for an infinite sequence , n.,, ....

It is easy to see that, if ?q. is one of these integers, the matri.x of

the polynomials is of the form

P, 0

X Y
1

where P,. is a square matri.x of order ?q., and that the matrix of

the operatoi’s is of the form

n= P,‘ 0

z T
Thus, in the case of a regular set of polynomials, it is pf)ssiblc

to calculate the first nj. elements of n by forming the re-

ciprocal of P,., the matrix consisting of the first n.'f elements

of P. The same is of cour.se true for a regular .set of operators.

As an example, let

(2-14) ll2„/(0)=/(2«)(i), (n^O),

- 1 1 0 0 .

-

1 0 0 0 .

1 0 2 2 .

1 0 6 0 .

_
,
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The reciprocal can be calculated by successively truncating H
into matrices of 2, 4, 6, ... rows and columns. We find that

P=r 0 -10 0

1-10 0

0 -i 0 ’

0 _ 1 1 _ J

3 2

SO that the basic ])olynoinials are

3
,

1 - 2
, i(-z + z=% ^(-2z + 3z^-z^), ....

The resulting series was introduced by Lidstone (1), who showed

that all polynomials could be represented by it.

§ 3. The convergence of basic series.

The convergence properties of a basie series depend to a large

extent on the particular polynomials concerned. In some cases

a comparatively simple expression can be found for the re-

mainder term. The Gregory-Newton series, discussed in Chapter

IV. is an example. It is always possible to find sufficient conditions

for convergence by rearranging the Taylor series of/(z). Write

(3-1) Jf,(i?) = maxba^)|-

Now, formally,

/(z) = 2u„z"
0

00

= {^,ioPo (^) + (~) + • • •}

0
00 00

=Po (2) Sff «7r„o +i>i (Z) H- . .

.

0 0

—Po (^) no/(o)+i^i G) ni/(b) + ••••

If
I j

^ .i? thcsG opGrcitions will be IcgitiiiicitG if

00

S |<.„|{S|,r,„|J/,(«)}
/I = 0 i

is convergent. Write

(3-2) a7„(Ji!) = S|7r„,|3/ai?).
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Then the following result has been established

:

Ljo2 • Iff (s) = is such tJmt

00

(3-3)

converges, the basic series

(3*4) Poi^) + •••

converges absolutely and uniforrnly tof(z) in
|
-

|

^ R,

It follows that a basic series represents all integral functions of

siiflBciently slow growth. More precisely:

L^q3 . Associated with a basic series there is a function
(f)

(n) with

the following properties

:

(i) (f>{7i)>0 {n^O);

(ii) iff{z)
—

Dr/,, satisfies the condition

(3-5) |a,J<(^(M) {n^'nf),

the basic series converges to f (z) absolutely and iiniforndy hi any

finite region of the plane.

It is sufficient to take

(3-0) <i){n) =
1

n'^w,^ {%)'

To obtain the best quantitative results a more subtle choice of

^ (w) is called for. Let us first define the oi'der and type of a basic

set.

Definition . The order of a basic set ofpolynomials or operators is

(3-7) 6(j = lima»(jB),

where

(3-8) (JO {R) = lim

If 0< CO < 00
,
the type is

logio^jR)

, nlogn

(3-9)

where

{3-10)

y= hmy (i2),

jR—> CO

coy{R)
= lim {a>„

71-*®
n~^.
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It is evident that co (It), y (i?) are increasing functions, so that

the limits (3-7), (3-9) exist. A set of order tu', type y' will be said

to be of smaller increme than one of order w, type y, if w' < to or if

to' — u) but y' < y.

^104 • Pit (^)} Intsic set oforder to,typey,andA{^0),B are

any constants, {p^ {Az + B)\ is a basic set of order w, type
[

A
|

y.

Write p„{Az + B)=2^*Az),

and let^j*
,
M* (B), to* (B), etc., refer to {p* (s)], so that

^ P*iA^ = + By,

and

i.e.

where

P7,/.
_ V

P* = PA,

1 (I 0

B A 0

B‘^ 2BA A 2

Hence

and

Thus

Moreover

n*=(P*)-i=A-ip-i

1 0 0 . n.

_B
A

.42

2B I

.42 A2

IB':" " /n\

SO that, if i? ^ Bq,

(3-11) cot (ii) ^ II
|"si4(2

I

A
I

B)i^
|

5 |-'
|

! /?
;

H n \
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Now, if a > a;,

where K is independent of n, so that

13

O)* ^ CO.

O)* {Jt)<K

whence

and so

On the other hand,

(3-12) Pi

so that

Again, if

then (2
I

A
I

i^) <

so that, in (3-11),

l + |i^

“lAf

p„ 0).

CO ^ 60*.

{» ^ 0 ),

<K " V \

|A
i?| +

whence {^7* ( ^ j8
|

A
|

^

,

and so y* {li) < oj 'V'jS* "'
j

A
|

and y*
I

A

In the same way (312) gives

y ^ y*
I

A
I

Lio5 • IJ {Vh (
2)} is a basic set of order co, type y, and f (z) is an

integral function of increase less than order 1/ai, type 1/y, the basic

series converges absolutely and uniformly tof (z) in any finite region

of the plane.

The limitation on / (z) means that its order p and its type a

satisfy either

... 1 .... 1 1
1
) p< or (ii)p = -

,
a<-.

60 oj y

In case (ii) its Taylor coefficients satisfy the inequality

I I
< {a.^e<jj~^n~^)'^^ {n ^ nf),
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where > a. Again, if > y,

u)„
(
R) < (yj coe^^w)""' (w > n^,

and so
|

a„
\

cy„ {R) < (o-iyi)'"" (n ^ n^).

(7j, can be chosen so that o-^yi < 1, since cry < 1, and the result

now follows from Ljq
2 . Case (i) is easily dealt with.

The order of a set of polynomials is naturally connected with

the size of their coefficients. The result which follows illustrates

the method by which the relationship can be investigated.

Simple sets of polynomials tvith bounded coefficients. In the ease

of a simple set of polynomials, i.e. when p.,^ (z) is of degree n, there

is no loss of generality in taking the coefficient of 2'* in p^^ (2) to be

unity. It will be assumed that this is the case. This implies that

is of the form

(3-13) A j. '^n+l.n

n ! dz“ (n + i) !
^2”'+^

and vice versa.

If the remaining coefficients of the polynomials satisfy an

inequality

(3-14)

the basic series has simple properties.

We need a lemma on determinants. Let an ?i-rowed deter-

minant in which the diagonal above the leading one is composed
of unit elements and all diagonals above it of zeros be said to be

of class Z^.

Ljog . If A = \\a^j\
\

is of class Z.^ and

(i=l, 2,...,i; i=\, 2,...,n),
then

(3-16) |A|<Z(l + A')»-i.

For, on expanding in terms of the elements of the first row, it is

seen that A is equal to

a^i X a determinant of class Zj^_i— a determinant of class
,
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a.nd (3-15) follows from this by induction. The constant on the

right of (3-15) is exact, since

K 1 0 . : = A'(l + 7i)"-i.

-K K 1 . :

K -K K .
'

I

• • •
•

\

(n rows)

Now, if Pq {z), x>i (z), ... is a simple set of polynomials, the co-

efficient of the highest power being always unity, it will be found

that

TT(j = a determinant of class
( ;
= 0

,
1

,
2 . . .

. ,
i — 1

)

.

Thus (3-14) implies that

I

TT^j
I
< ilf (

1-1- < ( 1

+

Take Ii> 1 + M, so that

Jli + B + + A'-i)
-I- < (i + 1)

and a»,j(jB)< S (^-t- 1) A‘(l -f- il/)"-' 4- (w-l- 1) A"
1 = 0

< S (i-t- 1) (w-l- 1) A" = l-(a4- 1) (?i-f 2) jB".

i
--0

Thus, by if/(^) = is such that

S
I I

(» -I- 1) -I- 2) A"

converges, the basic series converges absolutely and uniformly to

/(z) in the circle
|

s
|

< JB. The following result has therefore been

established (11):

Theorem 2. Let

(3-16) Pi{z)=Pio+PiiZ + ...+Pi^i_iZ^~^ + z<- (i = 0,l,2,...)

be a simple set ofpolynomials whose coefficients satisfy the inequality

(3-17)

and let f{z) be regular in \z\<R, where R>\+M. Then the

basic series

(3-18) ^0 {z) no/(0) +pi (2 ) lli/(0) -f- ...

converges absolutely tof(z) in\z\<R.
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The convergence is uniform in any smaller circle. The theorem

is “best possible” in that the condition R>l +M is essential.

For, if

Po(z) = l, _p,j(2) = Z‘ + Jf — + ...)

it will be found that

,7,,. = ( - y-i M{\ + (j = 0, 1, 2, . .
.

,
i - 1 ),

and, if/

(

2
)
is taken to be

(
2+ 1 the series defining no/(0),

1 M U
1 + AT '( 1 + jVi)»'( 1 + J-l

)** ’

does not converge. That is to say, there exists a set ofpolynomials

satisfying (3-17) and a function f{z), regular in
|

2
:

|

< 1 +M, for

which (3*18) does not converge.

Uniqueness theorems. In conclusion it is important to point

out that in general there is no “uniqueness theorem” associated

with a basic series, i.e. the fact that

converges uniformly to zero in some region does not always

imply that all the .4’s are zero, e.g.

1 —
(
2 + 1) +

j

+ + ••• = 0 (all 2 ).

This is connected with the fact that multiphcation of infinite

matrices is not always associative, so that, though a row-finite

matrix can have only one row-finite reciprocal, it can also have

one-sided reciprocals which are not row-finite. Necessary and

sufficient conditions for the “uniqueness theorem” to hold good

can be found by applying the argument of Vitali’s theorem (13).



CHAPTER II

THE SUM OF A FUNCTION

§ 4. Bernoulli polynomials.

If two functions are connected by the relation

(4-1) ^g{z) = g{z+\)-g{z)=f(z),

f{z) is called the difference of g{z), and g{z) the sum of f{z). The
sum is analogous to the integral, but whereas the integral is

indeterminate only to the extent of an arbitrary constant, any

function of period unity can be added to the sum.

Let us first try to find a polynomial {z) such that

(4-2) <l>Jz+l)-<f>Jz) = nz-K

The indetermination can be removed by assuming that (f>^(z)

vanishes at the origin. These conditions are evidently equivalent

to

<^.(0 )
= 0

,

(4-3) = 0 {s = 0,l,...,n-2,n,n + l,...),

— nl (« = »—!),

so that 1, <f>i{z), ^z{z), ... are the basic polynomials associated

with the simple set of operators

(1-4) /(O), /(l)-/(0),

3-|{r(l)-/"(0))

and any polynomial /(sj) can be expanded in the series

(4-5) f{z)==fi0) + {f{l)-f{0)}<f,,{z)

<f>n
(z) is generally called the nih. Bernoulli polynomial, but the

name is sometimes applied to the slightly different polynomial

{z) defined below.

WI F 2
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Take/(2)
in (4-5) to be

<f>n
(z) and use (4-3);

(4-6) i,' (z) = <!>„' (0) + {z) (n = 2, 3, . .
.

)

Now write

(4-7) = B^{z)=l, B,{z) = <f>,{z) + B,, {n^l)
lb

SO that (4-2), (4-3), (4-6) give

(4-8) 5,,(2+1)-£„(2)=»2«-1,

(4-9) B,M = B„,

(4-10) BJ {z) = nB,^_^{z).

It follows from the last relation that

(4-11) i
(0) =

j
(0 < s < «),

so that

(4-12) =

Again, setting 2 = 0 in (4-8), and 2 = 1 in (4-12),

5ai)=i^i(0) + l = f?i+l,

J5.„(1)= i
„=o \s I

B^ = l,

These are the recurrence relations for the Bernoulli numbers.*

The series S B
(
2

) ^
n=0 n\

(4-13)

Thus

(4-14)

They are sometimes defined differently, by the equation

= 1 -
t BA-
- +-i-
2 2!

Cf. (4-15).
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is called the generating function of the Bernoulli polynomials.

Now, formally,

00 fn CO ( n

n=^0 ^ • n^O 0 B,z”
nl

In this set z=l;

whence

(4-15)

and

(4-16)

n—i

00
iS„ “2

= S f s
s=0 ^ • « — s

oo ^
= e' X

)
77

!

s=0 s

t

;

'o
«'•

( fn—s 00 fs

= S .

-s)\ , 0

e'-l'

The fact that the expression on the right can be expanded as a

power series in i, if
|

f
|

< 277, justifies these operations. Moreover

^ -^71
! ^<—1 1 — ^ ^n\^)

I

>

7^—0 7h\ C X X 6 71—0

so that

(4-17)

Again,

S
71— 0

in— 1

S B,
/c-0

^n(l-2) = (-)'' Bn (2)-

f 7a)
j
71 !

~ e<^l ,,=o

^ ~
e'/"*--

1

whence

(4-18)

cfj / ^
\ n

= 777 X B„{mz)[ A
,

77-=0

771— 1 / ^ \

7c=0 \ mj

Various special values of the BernouUi polynomials, which will

be useful later, follow from these relations; e.g.

(4-19) ^an+i(l) = ^2«+i= 0 (w>0),

(4-20) B,,(i) = (2i-‘-l)B„.
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The integrals

f {x) cos 2s7Txdx, f (x) si

jo jo
sin 2sTTxdx

can be evaluated by integrating by parts, using (4-10), (4T3),

(4-19), and yield the Fourier series, valid for 0 < a; < 1,

2 {2n)\ “ cos2s7ra:

(2-n-)2»^ .,= 1

) (277)2«+i ,“1

Set a: = 0 in the first of these;

(4-22)
2(2/^)! ^ 1

The function obtained by subtracting from
(
2

)
the first s terms

of its Fourier series was investigated by Hurwitz
(
1 ), and is of

considerable importance in the sequel. Consider the integral

(4-23)
?> ] r

' 277ij,.^e'-l
’

where Cg is the circle
|
^

|

= (2«+ 1)77 and s is a positive integer.

Evidently

(4-24) B„^,{z) = B„(z),

and, by the residue theorem,

N p2k7Tiz
{ (

\n p—2k7Tiz

(4-25) B„. (.) - ii„ (.) = „! •

Thus, for all values of n and s,

(4-26) B^g{z+\)-B^g{z) = nz^-'^.

It is easy to see* that (e^— 1)“^ is uniformly bounded on the circles

Cg, so that

(4-27) i4B,„,,(2))^:
n\ e(2«+«’^i2i(25+l)^/•27T ^(26*+1)i

V— / I I

277 j 0 I

e'- 1
I
{{28 + 1 )

77}”

< A nl I ^
I
{( 25 + 1

)

77)
1-",

when A is an absolute constant.

These results enable us to determine the order and type of the

Bernoulli polynomials.

* Cf. Dienes
(
1 ), 252.
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L201 . 1, ^0 (
2 ), ... aTtd ... are both sets of

order 1, type l/27r.

For
P^TTIZ

\ ( \n p—2TTiz

(4-28) + 0

SO that the maximum modulus of (z) satisfies tlie inequality

<^,,{R)<K{R)n\{27Tr‘>.
Thus

<"»(«)= S s r—
i=ii! («-i+ 1)!

and so

1 )!

f27rV’’= Kn\{-27T)->^ 2 {- ^<K'n\{27T)-‘\

OJ = 0) (R) ^ 1,

y=yiJi)<.y
ZiT

On the other hand the series (4-5) vanishes identically when

/ (z) = sin 2772, so, by ,
the increase of 1

,
(z), <^2 (^)> • • • cannot

be less than order 1, type 1/27t. The set Bq{z), 5j(z), ... can be

treated in the same way.

§ 5. The sum of a function.

Integral functions. In virtue of (-f-H) a polynomial

/(z)=flf„ + ai,z + ...+a„2”

has the sum

(5- 1 )
g{z) = a, B, (z) +1 i?., (,) + ... + ^

B,, (z)

.

In the case of an integral function f{z) = Ea,^z^^ the series corre-

sponding to (5*1) does not always converge. In place of it we
consider this series

00 rt

(5-2) 6r(z)= 2 ^

and endeavour to choose So> •••in such a way that this series

converges uniformly in any finite region of the plane. This is

always possible. For example, take <s„ = w, so that, by (4-27),

I ^n.s/i (2)
j

< -4 » !
e(2«+i)wi2i 4- 1

) 77-}^
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and g (z), defined by (o-2), is an integral function. The result thus

established, that it is always possible to find an integral function

which is the sum of a given integral function, is due to Guichard

(1), the proof given above to Appell (1) and Hurwitz (1).

It is possible to prove a more precise result (7, 12).

Theorem 3. Iff{z) is an integral function, there is an integral

function g (z), of the same order asf{z), such that

S'
(2+1) -.7 (2)=/ (2)-

In the case of a function of infinite order this reduces to

Guichard’s theorem, so we may suppose that p, the order of f{z),

is finite. If p < 1 it is sufficient to take

<7(2)= i ^ B„^,{z).
„=o^+ -1

For, by (4-27),

I

B„ {z)
I

<An\e'"^^^7T'^~^ <n”e”^^^ {n'^nf),

and, if p~'^ > A > 1
,

!<*»!< ^ ^a)-

It follows that the series defining g (
2 ) converges and that it can

be differentiated any number of times. Thus

CO ^

(

0 )
1

00

= S a„_n{n-\)...{n-lc + 2)B^_k+-i_.
n~k—l

Now it is clear from (4*19), (4-22) that

(5-3) \B^\^4.n\(2u)-^ {n>Q),

so that

Moreover

00

I

g^^^ (0)
I
< S n !

(27r)*^~"~i

n=k—l

{n + l)+»»+i)^ (n + 1) !
(27r)*-«-2

(

1

1 + — 1
(w+ 1)^“^>

{k ^ kf).

{n^k- 1),
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so that

I S'* I
—

1 !7fc (^)

Thus hm Mr/A- L^A.

This is true for every A < 1/p, so that the order of g {z) cannot be

greater than p. On the other hand it is obvious that no sum of

/(«) can be of order less than p.

Ifp ^ 1, consider the function A {n) defined by

A(n) = min
/log

I «r«,

mlogm

A {n) is an increasing function, and

(5-5) A {%) -> lim “ill" = ^

.

n\o0n pn~^ 00 o r

Again, writing a (w) = 1 — A (n),

(5-6) w"“('0|(2s^^ + l)7r}-“<e-'‘ (n^l),

provided that (2s„ + 1 )
tt >

and this is so if

(5-7)

It will be shown that with this choice of ^q, Sj, (5*2) defines

an integral function of order p.

Corresponding to a given value of r =
|

z
|

define the integer

(5-8) A(r) = [(8r)i'^<2)].

Then (4-27), (5-4), (5-6), (5-7) show that

w,„(z)= l)7r}“"exp{(2«„+ l)'n'r}

7h 1

(5-9) <exp{ — % + 7ri“<“V}<e“”^® {n>N),

8
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Now take a fixed integer p and write a (^) = a. Then

N N
(5-10) S (

2
)
< 2 exp{ —

+

71= 2^ n= /4

iV

<2 exp{ — w + ?%“/•} <N(r)p,(r),

where p,(r) is the greatest term of the last series. [x{r) is deter-

mined by finding the maximum value of the function

— x+ lx°^r,

namely

so that

(5-11) p (r) ^ exp -
1
j

(7ar)Wi-“)

Now, making use of (5-9), (5- 10),

p -1 00

J/q (r) = max
1

(

2
) I

< 2 (2 ) -t-N (r) /x (r) -1- 2
\z\==r = 0 ?i= A' I 1

whence, by (5-8), (5-11),

iT- loglogifo(r)
lim ---

,

logr

Finally, make p tend to infinity, and use (5*5).

It follows that g{z) is of order less than or equal to />, and, as

before, its order cannot be less than p.

Meromorpliic functions. In the paper referred to, Hurwitz ex-

tended Guichard’s theorem to meromorphic functions, that is to

say, he proved the following result:

L202 • Iff{^) ^neromorpliicfunction, there is a meromorphic

function g {z) such that

f/ (2 +!)-{/ (2) =/(2)-

This theorem can also be made more precise (8 , 14 ), but the

matter is not so simple as in the case of integral functions. For

the order of g (
2

)
is in general not p but p -t- 1. This is inevitable.

It is due to the fact that, whereas the sum of a polynomial is a

polynomial, the sum of a rational function is in general a

meromorphic function of order greater than or equal to one.
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Theorem 4. Iff(z) is a meromorphic function of order p, there

is a meromorphic function g{z), of ol der less than or equal top+ 1,

such that

Suppose, to start with, that p is finite and that the j)oles
1

... of f{z) are all in Rz < 0. Define p (k) for integral values of k by

the equation

(5-12) max log+ |/(2 ) |

|c:-fc| = A--l

and write

(5-13) X{k) = mgixp{l)^p(k),
lyic

so that X{k) is a decreasing function. It will be shown that

(5-14) A= lim A(/t)

In the z-plane draw the circle
|

2
|

= 21' and the line R2 = 1, and

denote by C the closed contour consisting of the ])art of the line

intercepted by the circle and the arc of the circle to the right of it.

Then, if p < a,

(5-15) M/. = max |/(z)
|

< exp A:“ {k ^ kf).
c

For,* if 2 = re'^ and R > r,

log+ |/(re‘^)
I
< - - r log+ \f{Re''*)

\

R--r^
R'i + r- — 2Rr cos

(<f>
— d)

„ ,
' R'^-h.z

df

If z is on C,
I

— b^z
|
< 2R:^,

|

2

so that, in the usual Nevanlinna notation.

bg
1

^ 1
,

I f'

log+ |/(re^^)
I
< - — m{R, 00

)
+?i (F, 00

) log 2R.

Ifp<^<a, m{R,cG), n{R,ao) < R^ {R'^ Rf),

so that, taking R= Zk,

log+ Mj. < 5m {3k, 00
) + n {3k, 00

)
log Gk < k'^ {k ^ kj,

which is (5T5).

* Nevanlinna (1 ), 25.
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Now the circle
|

z —
|

= Z;— 1 is enclosed by G, so that, for all k,

lcP(f^'> log+ ,

and hence p{k)<a. {k'^kj.

Thus A = lim p (k) < a,
Ai —->-co

and, since a may be any number greater than p, this gives (5-14).

Next consider the polynomials

P,A-~) =

1

n, 0 n\

where pj^ is to be chosen so that

(5-16) lP^^z)-fiz + k)\<~

Cauchy’s inequality gives, for n^O,

fM(k)

(k^l),

2
I
^ 3- (Z; 1)).

n\
(Z;— 1)'^< max |/(z)

|

^expZ;^®,

so that, if
I

z
I
^ J (Z;— 1),

n~pk+l \ ^ I

< 1 3“^*' exp < k^^,

provided that*

(5-17) p^ = [Z^^(«] + l.

(5-16) shows that the series

F{z)= I. {P^{z)-fiz + k)} (Po{z) = 0)
k=0

converges uniformly in any finite region of the plane, neglecting

a finite numberofterms at the beginning. F(z)is therefore amero-

morphic function. It will be shown that its order does not exceed

/)+l.

* There are trivial modifications if A=0. Take

Pj^ = max + 1, 100 log A*}.
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Take a fixed integer I and, corresponding to a given value of

r=\z\, define — [3r] + 1 . The inequality*

(»’Ji +/2+ • • • +4) < S m. {r,f,) + log q

gives

(5-18) m{r,F)^m\r, 'L {P,,{z)-f{z + k)}\+ S m{r,P^{z))
\ fc-O )

+ S m{rj{z + k)) + m\r, S {Pk{z)-f(z + k)}\

+ log (2(7,+ 2).

Now, if Z + 1 ^ A: < g*, ,
r ^ 100,

m(r,Pfc(2))<log+ S ^log+ S (

/'
VexpZ;^(«

r?.“0 • It -0 1 /

< logPfc+Pa:
log r + A;''® < 2g';’'.*^dog r,

and so

S m (r, (z)) < 2q)^''* log r < 2 (4r)^®+i log r.

A'=

1

Next,/(2) is ofthe form (z)lf2 (z), where (z),/2 (2) are integral

functions of order less than or equal to p. For the same range of k,

the inequality ^ {r,fg) <m {r,f) +m (r, g)

and Nevanlinna’s form of Jensen’s theoremf give

TO (r,/(z + k))^m (r,/i (z + A:)) + to

= TO {r,f^ {z + k)) +m {rJ2 (z + A:)) - iV
I I

< TO (r,/i (z + A:)) + TO (r,/2 (z + A;)) - log
|

c;^
|

<logilfi(4r+ l) + logif2(4r+ 1) — log
[ \

< yP+e (r ^ r^),

where c\ is a constant, M^{r) and M2 (r) are the maxima of

1/1 (z)
I

and 1/2 (z)
|

for
|

z
|

= r, and e is a given positive number.

Again, by (5-16),

TOjr, S {P,(2)-/(2 + A:)}|<log2p.
I /C=Qr+l J

* Nevanlinna
(
1 ), 14. f Nevanlinna

(
1 ), 14, 6.
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Thus, as r->oo, the five terms on the right of (5-18) are respec-

tively 0{rP+^), O (r'®+^logr), 0{rP+^+^), 0(1), O(logr).

Again, the poles ofF (z) are the points — so

that (remembering that all the 6’s are to the left of the imaginary

n{r,ao, F {z)}^rn{r,oo,f{z)} (r^r^').

Hence T (r, F) = m{r, F) +N {r, F)

consists of the five terms enumerated above together with a term

0 (r/’+^+^), and so

— log T(r,i^) , ,

lim — — <max{A(l)+ l,p + e-|- 1}.

Since X{l)->X^p and e is arbitrary it follows that the order of

F (z) cannot exceed p + \.

Now, ifN is any integer,

AF{z)-f{z)= I {P^(z+l)-P,{z)}-f{z +N+l)
00 00

k---Nli k-^N+1

and, if is confined to any given finite region of the plane, the

functions on the right are regular for sufficiently large values of

AF{z)-f{z) = h{z),

an integral function. Evidently the order of h{z) cannot exceed

p+ 1. Thus, by Theorem 3, there is an integral function H {z) of

order less than or equal to p + 1 such that

AH{z) = h{z),

and so (j{z) = F [z) —H (z)

is a meromorphic function of order less than or equal to p +

1

satisfying (4-1).

Ifp is infinite, or if we only want to prove that a meromorphic

function has a sum without enquiring about its order, the argu-

ment is much simpler. Choose Pi, p^, • • • in any way such that

(S' 16) is satisfied. Then, as before, AF {z)—f{z) is an integral

function and so is the difference of an integral function H (z), and

g{z) = F (z) —H (z) is the required solution of (4- 1).
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If the poles of f{z) are in lR.z^d, the theorem is proved by
applying the result of the preceding section to f{z + d). If they

are in Rz ^ d) the poles of^ (
z) are in l^z ^ d^ and so there is a

function (z) of order less than or equal to p + 1, satisfying

9i(z+i)-gi{z) =/(- 2 ),

and so y{z)=—gi{ — z+l)

satisfies (4-1).

In the general case, when the poles of/(z) may be in any part

of the plane, we make use of Theorem A (p. 2). The projections

of the nebulae on the real axis will form a set of finite measure.

Let c? be a real number which does not belong to it. Then the

line Rz = c? does not intersect any nebula and so it divides the

pole clusters into two groups, one on each side. The expansion of

/(z) in normal form will divide into two parts corresponding to

these (the integral function being assigned to either) so that

f{z) = LAz) + EAz),

where (z), (z) are both of order less than or equal to p, the

poles of (z) being in Rz < cZ and those of (z) in Rz > d. By
what has been proved, both functions can be expressed as

differences of meromorphic functions oforder not exceeding p + 1

,

and hence their sum can be so expressed.

The number p+1 in Theorem 4 is “best possible”. For let

(*2 )
••• be an increasing sequence of positive numbers with

exponent of convergence p, satisfying the condition that no two

a’s differ by an integer, and let/(z) be a meromorphic function of

order p with poles at these points. It is easy to see that g (z) must

have poles either at all points —m+1 (m^ 1), or else at all

points a^+m 1), according as is taken to be a pole of

g (z) or of gr (z + 1). Thus the order of g (z) cannot be less than the

exponent ofconvergence ofthe double sequence +m («, m ^ 1 ).

Now, if A>0,

00 oo ^00 a:

S + S {a,^ + xy-^dx>K ,

fly m—1 H=l

so that for convergence we must have A>p+ 1 .
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§ 6. Linear difference equations.

The equation

(6-1) gr(2 +l)=/(z)gf(z),

where /(z) is a given integral or meromorphic function, can be

solved by means of the preceding theorem.

/(z) is of the form/j(z)/2 (z), the poles and zeros of/i(z) being

in Rz < 0, and those of (z) in Rz > 0.

fi (z) Ifi{z) is a meromorphic function, of order less than or

equal to p, with simple poles in Rz ^ 0, the residues at the poles

being positive or negative integers. By Theorem 4 there is a

function h (z), of order less than or equal to p + 1, such that

The method of constructing li (z) ensures that its poles are also

simple and the residues at them positive or negative integers.

Hence, by integration,

h(z)==
H'(z)

U{zy

where H(z) = e^'<^>
f7i(^

G^izY

F {z) being an integral function and 6\(z), C^{z) canonical pro-

ducts. Cj (z), (z) are of order less than or equal to p -t- 1. For if

one of them was of order greater than p-f 1, the exponent of

convergence of its zeros, and hence the exponent of convergence

ofthe poles ofh (z), would be greater than p -I- 1. This is impossible.

Now .

/i(z) = exp| ^{^(z-f- l)-^(z)}dz •

= ) = g^F(z+l)-F(z)

H{Z) Cl (Z) (72(2+1)’

and so F(2 +l) — F(z) is a polynomial of degree less than or

equal to p. Thus

F(z+1)-F(z) = P(2+1)-P(2),
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where P (z) is a polynomial of degree less than or equal to p+1,

9i (z) = eJ“<-

C,(z)

is a function of order less than or equal to p -f 1, such that

9l (2+l)=/l(z)9'l (2)-

^2
(
2

)
can be treated in the same way, and g (z) is then the product

of 9'l(2)> 5^2 (
2 )-

The following result has therefore been established (8):

Theorems. If f{z) is an integral or ineroinor'phic function of

order p, there is a meromorphic function g{z), of order le^ss than or

equal to p-\- 1, such that

g{z+l)^f{z)g{z).

As before, the number p + 1 is “best possible’’. For example,

the equation
g {z + \) zg {z)

has no solution of lower order than F {z).

Various other difference equations can be reduced to the

fundamental types (4*1), (6-1), e.g. the general linear difference

equation of the first order

(6-2) P{z)g{z+l) + Q(z)g{z)=^R{z),

where P (z), Q (z), R (z) are given integral or meromorphic

functions, which can be solved in the following way.

Let n
(
2;) be a solution of the equation

(6-3)

and let

W(3+ 1) =
<?(2 )

P{Z)
n{z),

g{z) = n{z)h{z).

Then (6-2) is

P {z)n{z+\)h{z+\) + Q {z)n{z) h {z) = R (z),

or

(6-4)

Thus (6-2) is equivalent to (6-3), (6-4).



CHAPTER III

PROPERTIES OF SUCCESSIVE DERIVATIVES

§ 7. A theorem of P61ya.

The operators /(a^), /' (ctj), /" (ttg), where ... is any

sequence of numbers, evidently form a simple set. Recently

Contcharoff, Takenaka and Kakeya have discussed the associ-

ated basic series

(7-1) G,{z)f{a„) + -^^Pr (a,) +^^r {a,) + ...,

and have deduced a number ofinteresting properties ofsuccessive

derivatives. As a preliminary we prove a beautiful theorem of

Polya (4).

Let/(2:) be a meromorphic function, a one of its poles. Let the

domain consisting of those points z which are nearer to a than to

any other pole be called ‘‘the county of a” or “a-shire”. It is

evident that, if a-shire and 6-shire have boundary points in

common, the common boundary is the line bisecting at right

angles the line joining a, 6. Thus a county consists of the interior

ofa convex polygon, which may be finite and have a finite number
of sides, or be infinite and have either a finite or an infinite number

of sides. Thus in the case of (p (z) the counties are all congruent,

and each is in general a hexagon with three pairs of parallel sides.

Now consider the set consisting of all the zeros oif{z), /' (z),

/" {z), ... taken together. Then Polya’s theorem asserts that the

derived set E' is identical with the “map”, i.e. the aggregate of

county boundaries defined above. Thus:

Theorem 6. Let f{z) be a meromorphic function and let E
denote the set of zeros of f{z), /' (z), Then a point z belongs to

E' if and only if it is equidistant from the two poles which are

nearest to it.

It follows that E' depends only on the position of the poles,

not, for example, on their multiplicity.
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Consider the sequence

2 !

"

f(z) being a meromorphic function, and denote by [R, 8] the

closed region consisting of the circle
|

2
:

|

^ i?, less those points

whose distance from a pole off(z) is less than 8.

Laoi- (i) The sequence (7*2) is uniformly bounded in every

region [J:, S],

(ii) If z belo7igs to a-shire,

f{n)(^z) 1

n\
I

2: — a
I

‘

Moreover the convergence is uniform in any closed part of a-shire.

To prove (i), consider the region [jR + i8, |8]. In this f{z) is

regular and so has a maximum modulus M. Again, if a point z of

[ii, 8] is surrounded by a circle of radius |8, this circle will lie

entirely in [ii + |8, |8]. Hence, by a classical inequality,

or

M
fi\

n\ ^ h

To prove (ii), consider a pole a of multiplicity g + 1, and write

/(2 )
= -

z — a (z — a)^ (z — a)''+i

where O (z) is regular at a and =t= 0. Then

/(«)(z) = (-)

and

/(«)(2)

n\A.
+ ... +

{n + q)\A^
+ 0<™>(z),

n\
= (-Y

{z — {z —
J

{n+l){n + 2)...{n + q)
‘^q

(z-a)"-*^fc

(z — a)”+'^+i

I {n+l) ...{n + q)n\ A,j {n + k+l) ...{n + q)A^

_/ \n(^+ 1) ••• (^ + 5) ^ , jL

WIF 3
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Denote by p (z) the radius of convergence of the Taylor series

of 3)(3) at a point z. p{z) is a continuous function. For, if

\z' — z\<p (z), the circle of centre z' and radius p {z)—\z' — z\ lies

in the circle of centre z and radius p{z), and hence

p{z')^piz)-\z'-z\.

Similarly p(z')^p{z)+\z' — z\ .

Now consider the function
\

z— a\lp(z). It is continuous at

every point z at which p (z) > 0, and hence at every point ofa-shire.

Moreover
, ,

at every point of u-shire, since the nearest singularity of O (z) is

the nearest pole of/ (z) other than a, and this is more distant

than a. Denote by .4 a closed region lying wholly in the finite

part of a-shire, by pQ the minimum of p (z) in A, and by a the

maximum of \z — a\lp (z). Then

(7-3) p{z)^Po>0,
P(2)

< a < 1 in A.

Choose j3 so that a < < 1, and surround each point z of 4. by

a circle of radius ^p{z). These circles will cover a region A*,

every point of which is distant at least (1 — P)pQ from the nearest

singularity of O (z). Hence <I> (z) is regular inside and on the

boundary of A*, and so

1 0 (z)
1
^ M' in A*.

Now each point z of 4 is surrounded by a circle of radius ^p (z)

lying wholly in A*. Hence

I

<!)(»> (z)
^
M '

_

and so, by (7-3),

(z-a)'«<l)<»^(z) I

^
/ay*

n\ \^\^j

It follows that (j>„ (z)->0 uniformly in 4, and this establishes (ii).
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The second part of Theorem 6 is an immediate deduction. For

/(/0
(
2
)

n\

Vti j
> {n > v) in A,
2

\

z — a
j

can have zeros in ^4. Moreover

f{z), /' (z), ... /^^^ {z) have only a finite number of zeros in A, No
interior point ofA can therefore belong to E' and hence no point

of a-shire can.

To prove the first part of the theorem two further lemmas are

needed.

L302. Letf^ (^)j/2 ••• regular in an oj[)en domain B, and let

the sequence
___

converge uniformly in every closed part of B, 3Ioreover, let there

be a point Zq of B such that

A (^o)> A(^o)>

converges. Then the given sequence converges tmifoimily in every

closed part of B,

Take B to be the unit circle and 2:^= 0. The general result can

then be deduced by the familiar process of covering with circles.

For take the circle
1 2:

|
< r and let r < JK < 1

.

Then the hypotheses are that, for given € > 0,

I fm (0) -fn (t>)
1
<

I
R/m i^)

\

< ^
( |

Z
|

< i?, TO, n > n^)

.

Borel’s inequality* applied to/,„(3) -/„ (z) (0) +/„ (0) gives

8J!?€

I fm (z) -/« (z)
I

< e + ( 1

Z
I
< r, TO, n>no),

which is the result stated.

L303 . Let fMi, ...bea sequence ofpositive numbers tending to go

and letf^ {z),f2 (z), ...be regular in an open domain B and such that

(7-4) |/i(z)|^''^x, ...

converges uniformly in every closed part B^ of B to a limitfunction

never equal to zero. Let Zq be a given point of B. Then it is possible

to choose the determinations of

(7-5) /i(z)^'"i, —
* Valiron (1 ), 20.

3-2
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in such a way that this sequence converges in B {and uniformly in

every closed part B*) and the argument of the limit function at Zq

has any given value.

Let a be the assigned value ofthe argument ofthe limit function

at Zq • Choose the determination of log /„ (z) to be that for which

- 71-+ a < I log /„ (Zo) < 7T + /x„ a.

This is possible, at any rate for sufficiently large n, since then

/„ (Zq) =
1
= 0 . It follows that

(7-6)
log In (2o)

Ml M2

The real part of this sequence likewise tends to a limit, by

hypothesis, so

log/i(2) I0g/2(Z)

is convergent at z„

,

Let -B* be a closed part of B. As the convergence of (7-4) is

uniform in B*, the limit function must be continuous. As it does

not vanish in B* it must have a minimum 8 > 0 .

Again, since the convergenee is uniform,

I fn (2)
I

> P (2 in B*, n > n^),

and so log (z) is regular in for . L3Q2 now shows that

the sequence (7-7) converges in B, and uniformly in any B'^, The

same is therefore true of the sequence with general term

log/n(2 )/^(z)i/M« = exp

It has already been shown, in (7-6), that the argument of the

limit function at Zq has the assigned value a.

Let C be a circle whose centre lies on the boundary of a-shire

and which does not contain any poles of/(z). It will be shown

that at most a finite number of/ (z),/' (z), ... have no zeros in C.

If not, there must be an infinite sequence of functions

(7-8)
(
m!

j

(m = p,i,p2, •••)

which have no branch-points in C and so are regular in it.
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A part of C lies in a-shire. Let Zq be a point in this part.

Then, by (ii) and L3Q3, the determinations of (7-8) can be

chosen in such a way that

(7-9) |

y(»0(^o
)|l/m

^

1

\ 7n\
)

Zq — a
’

Now the limit function of (7-8) is regular in C^, owing to the

uniformity of the convergence, and its modulus is
\

z — a\ ~^. It

follows from these facts and from (7-9) that the limit function is

(z — a)~^ in Cl

.

Again, C lies inside a region [i?, 8], and so, by L3o^ (i), the

sequence (7-8) is uniformly bounded in C. It follows from the

Stieltjes-Vitali theorem,* in Stieltjes’ original form, that (7-8)

converges to (z — a)~^ in the whole of C. But C contains part of

the county ofat least one other pole besides a, say that of a pole 6,

and, by L301 (ii).

1
r1 >- 6

|

in 6-shire.

We have now reached a contradiction, since
|

2 — a
|
>

|

z — 6 |

in 6-shire. This completes the proof of the theorem.

Polya next defines the boundary (Crenzlage) of a sequence of

plane sets M-^, M^, ... in the following manner. A neighbourhood

of a point z being defined to be a circle of centre 2, the points of

the plane can be separated into three categories.

A point belongs to the first category if some neighbourhood of

it contains only a finite number of points of
,
ilf2 ,

. . .

.

A pointbelongs to the second category if everyneighbourhood of

it contains an infinite numberof points ofM -^ ,
but in some

neighbourhood an infinite number of
,

. . . have no points.

A point belongs to the third category if every neighbourhood

of it contains points drawn from all the sets M^, M^, ... except

possibly a finite number.

The points of the third category form the smallest boundary

of the sequence of sets those of the second and third

categories together the largest boundary. If these coincide, i.e. if

* Dienes
(
1 ), 156.
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there are no points of the second category, the set is said to have

a boundary.

Take to be the set of zeros of (2). It has been seen that

a point in a countybelongs to the first category, and that all other

points belong to the third category. Thus the aggregate of zeros

has a definite boundary, namely the lines separating the counties.

We have considered the zeros of the functions f(z), f (z),

It is by no means obvious that the a-points, i.e. the values of 2

for which / (2), /' (2), ... take a given value a, have similar pro-

perties. This is however the case, the boundary of the aggregate

being the same as that of the zeros. This follows from the fact

that the sequence

(
7 - 10

) |,r(2)-a|,

has the two properties of L3Q1; the sequence
(
7 - 10

) is uniformly

bounded in any [E, S], and inside the counties we have

lim
n\

Theorem 6 shows that if / (2) has only one pole E' is null, but

it does not throw any light on the case when f{z) has no i)oles,

i.e. when/(2) is an integral function. Polya goes on to discuss the

case of an integral function of the form

P(2)e«<^),

where P (2), Q (2) are polynomials, Q (2) of degree q^ 2
,
and shows

that the limiting position of the aggregate of zeros consists of q

concurrent semi-infinite lines; but even this case, simple as it

looks, is very difficult to deal with, and it seems highly improb-

able that the set E' has a simple geometrical form in any wide

class of cases.

§ 8. Theorems of Gontcharoff, Takenaka and Kakeya.

Qontcharoff's inequality. (2), in the series
(
7 - 1 ), is determined

by the relations

= 0 (m = 0,l,2,...,n-l),

G‘f>(2) = w!,



PROPERTIES OF SUCCESSIVE DERIVATIVES 39

whence it is easy to see that

(8-1) 0,^(z) = nl f~dz' f\lz" ' dz^“^

J </o V Oi J U tt— 1

= «, ! (7 (
2 ; rt„ ,

, . .
.

,

(say)

.

Evidently

(8-2) (2 ; ao >
• • • > «»-i) = (~ ; «,« > «,«+! >

• • • . (0 < m < %).

Again /(2)=/(ao)+ f f'(z')dz'
J (Iq

=/K)+ f'^z'{/'K)+ rr{z")dz'’]
J (fo \ J ffi /

=f(a„} + Gi(z)f'(a,)+ {"dz' f' {^")dz"

,

Uo •) (t I

and so on, so that

(8-3) f{z) =f(ao) + Oi (z)/'(«i) + ...

where

(8-4) R,^(z)=[ dz'\\lz" ...{' /(")(2<'^))^/2(").

Gontcharoff’s (1) results are mostly founded on an inequality

which he proved for integrals of this type. Write

I=V dz' ...V V(z'“))(Zz(”>,
v Go */ (t n-—

1

and denote by Zq
,
Zj

,
. .

. , the lines j
oining 2 to to

,
. .

.

,

o„_2 to . Some of these lines may reduce to points. Let L
denote the broken line formed by Zp, Zj, ..., Z„_i, and let F (

2
)
be

regular in a domain containing L, so that

I

i^’(2)| on L.

Write

h = I «H,-i
-

«ft-2 1
+ • " +

I 1 1 - i

(Z = 0, 1 2),

Z«-i = 0, Z = Zo+|2-ao|.

The paths of integration are all portions of L, in the direction of

decreasing indices of the points . Thus 2 ' is a typical point of L
between and 2

,
2” a point between and 2 ', and so on. Denote
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by (A; = 1 , 2, . .
. ,
n) the length of the path (along L), and

let when 3^*^= aj._^

,

and t' = t when z' = z, so that

/A \"iz"
1

'
dz"' ...

(
J ti)

1
J

'

a\ J at J an~i

1

1

dt"
tx

!
%!

rdz'"...
' r/2 »' an-i

(•t /•«'

<Jf dt'\ dt" ... dt<»\

J to J ti J tn—1

Now it is evident that

^ (d 2),

so that
[•l ('I' ctc-o njfn

(8-5) \I\^M
\
dt'\ dt" ...\ =—

Jo Jo Jo

Write u.„ = \a„-
|

{n > 0),

«o = d, «„= N {n^\).
7tl ~ 0

Then, taking jP
(
2

)
= 1, (8-5) gives

(8-6) |(7(z;ao,ai,...,a„_i)|^J,(|2-Oo|+s.„_ir {n>l).

Again, taking F (z) = (z),

(8-7) |-R„(z)|<^|"(|2-aol+-s„_i)’' {n>l),

where denotes the maximum of {z)
|

on L,

Gontcharofi’s first theorem is as follows:

Theorem 7. If
00

(i) S \<^n'^^n+i \

converges, so that -^Z ;

n—O

(ii) f{z) is regular in the circle of centre Z, radius R: then the

series

(8-8) (?o (2)/(ao) + iz)r (a,) +^V" K) + .••

converges uniformly to f{z) in every circle interior to the circle of

regularity.
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There is no loss of generality in taking Z = 0.

It will first be shown that the series converges uniformly in

{0<B'<E).

Let R' < R" < R, and write

Pii ^
I ^^m+1 I

•

m~7i

Then there is an integer N such that

(8-9) p^<\(R”-R').

Denote byM (</>, r) the maximum modulus in
|

z
|

^ r of a func-

tion <j) (z), supposed regular in some larger circle. Then, as follows

readily from Cauchy’s integral,

(
8 - 10

)

M{cf>(-\r) M{cl>,R)

Now, using (8-2), if

=/<”>(««) G^(z;a„.,av4i.

so that, using (8-6) and (8T0),

I) I

Jn-N)\M{f^\ R"){\z-a^\ + ... + \a„_.-a„_^\Y-^

{R"-\a„\r-Hn-N)\

n being supposed so large that
|

a,,^
|

< /i'. Moreover,

I

Z — Ujy
I
^

1
^

I

L
I i

^ '^Pn>

and
I
Ua^-u^v+i

I

+ ••• +
I \^Pn-

Hence

1 |V» ( R' 4-^n

(«J GT (z)

I

< {M (/(^>, R")r-
I I

I-A/m

and, as ^^->oo, the limit of the expression on the right is

{R' + 2p^)IR",

which is less than unity. Thus the series obtained by differentia-

ting (8-8) N times is uniformly convergent in
|

z
|
< jB', and the

same is therefore true of (8-8) itself. The sum of this series is thus

regular in
|

z
|
< i?.
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Again, consider the remainder after n terms of the series ob-

tained by differentiating (8'8) N times, N being now chosen so

p,^<iR' H)<R'<E).

If
I

z
I
^ Jj?', (8-7) gives

I

< II (/'">, (h-%1 +p.,-)"-’

<

<

(-T)
_ ^

Jf(/w i?')

2;
I

+ 2/Oy)^^
^

-> 0 as n -> 00,

since [\R' + 2p^.)j^R is less than unity.

Hence
|

i?,, (2:) |
-> 0 as n-^00

(| 2:
|

^ -Jii'),

and so (8*8) has sum f{z) in the circle
\

z\ = {R\ As the sum of the

series is a regular function it must be f{z) in the whole circle

I
^

I

< i?.

An obvious corollary of Theorem 7 is as follows:

L3Q4 . Let f(z)(^ 0) be rexpdar in a domain D, and let ...

be zeros of f{z), f'{z), ... respectively. Then S
| |

cannot

converge if the sequence a^,a^, ... has a limit Z inside D.

In particular, iff{z) is an integral function and is any zero

of/<»'>(2), Sla„-a„+i| diverges.

As an example of a case where Z is on the boundary of 1) and

S
I
«„ — «„+! I

converges, consider the function for which

(a:) 0 as a; -» 0

by real positive values. Moreover /” (^) = 0, so that, by Rolle’s

theorem, there is a sequence a2>®3>”->b of zeros of/” (2),

/'” (z), ..., the limit of the sequence being Z = 0.

In Theorem 7 the condition that 2 (a„ — converges ab-

solutely is all important. For consider the function (l-fz^)^^.

The “county boundary” is in this case the real axis, so, by what

has been shown, if Z is any real number, a sequence {«„} of zeros

can be found so that 2 (a,j— a„^i) converges to Z. By L304, the
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convergence can never be absolute, but it may be shown that the

divergence of S
|
«„ —

|

can be as slow as we please.

It has been seen that a sequence of zeros cannot converge

absolutely to a point at which the function is regular. (lontcharoff

proves further that

(8-11) limw
rt—>00 ^

being a zero of/^"^ {z) in
|

z|< R, and Kakeya
(
1 ), extending a

result of Takenaka (2, 3), has shown that

(8-12) \m\n\a,i\^ R\og2.
n~>oo

Consider once more the set E consisting of the zeros of a

function and all its derivatives. Gontcharoff defines a point Z
of E' to be regular if it is possible to assign a sequence of points

{a,j}such that/^”^ = b and Z. Polya’s investigation shows

that a meromorphic function possesses only regular points. An
integral function may, however, possess irregular points, e.g.

/(2 )
= sinz, Z — k^ {k— 0,±l,±2,...).

Let Z be a regular point of a function /(z), supposed analytic

at Z. Let be a zero of /*''* (z) such that the circle

\z-Z\<\a„-Z\

does not contain any zeros (a„ = Z ifp'‘'> (Z) = b). Now define the

order of Z to be a, where

(8-13) ^ lim w
I

a„ — Z
|,

R being the radius of convergence of the Taylor series of/(z) at Z.

Then (8-12) shows that a cannot exceed 1/log 2.

It would be interesting to know the “best possible” result in

this direction. Gontcharoff conjectures that the order can never

exceed 2/7t, the value attained in the case of the function
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Takenaka^s theorem. Gontcharoff and Takenaka prove many
theorems concerning integral functions, those of the former

usually involving

~ ^
I ®m+l I

>

7n~0

and those of the latter
|

|. From these we select the following,

a particular case of one of Takenaka’s theorems.* The proof

given below is suggested by Kakeya’s proof of (
8- 12).

Theorem S. If every derivative of an integral function f (z) has

a zero inside or on the unit circle and if

(8- 14) Im < log 2,
r—VO) ^

then f{z) is a constant.

Let Oq (z), Oi (z), ... be the basic set associated with a sequence

Oq, Uj, ... satisfying

(8- 15) |a„|<A:<log2 (n^O),

so that

(8-16) z^= al}G(,iz) + na^-'^Gi{z) + ^^^^j^^a^~^G^(z) + ...

+ (^)-

Given R, suppose that

I I

(|2:|<i?, m = 0, 1, ...,%— 1).

Then (8-16) gives, for
|

z
|
< i?,

I

(z)
1
< i?" + k^M + nk^-^M 1 ! + ” W2 ! + . .

.

JU I

= f?« + m!(fc + 2
-, + 3 ,

+ ... + ^-,)

<|^ + il/(e*-l)|w!

< Mill,

i?'*
provided that ^ (2 — e*'

)
ilf

.

* Takenaka (4).
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Choose If ^ 1 so that this is satisfied for all n. Then, by induction,

I
(?,j(2)

I
< Jf%! (|z

I

w^O).

Again, by (8-16),

0),^ {R)^M {k‘'' + nk“~^ 1 ! + ... + w!) < Mn\e^.

It follows from (3-7), ..., (3-10) that the increase of the set of

polynomials does not exceed order 1, type 1.

(8-14) implies that/(z) is of increase not greater than order 1,

type I < log 2. Let I <k< log 2. Then the increase of

does not exceed order 1, type Ijk < 1, and so, by Ljoj,

or

(8-17)

F{z) I
n=~i)

nl k’^-'

If each of/' (z), /" (z), ... vanishes in
|

z
|

^ 1, we may take the

zeros to be the points ajk, a^jk, ..., in virtue of (8-15), and with

^0 = 0, (8-17) gives

/||)
= (fo(^)/(0)=/(0).

The condition (8-14) is probably not “best possible”. Con-

sideration of the function

. 77 77

Sin " z — cos - z
4 4

shows that log 2 cannot be replaced by any number larger than

77/4, and this may well be the true value.

§ 9. The two -point boundary problem.

Mention has been made of Lidstone’s series, the basic series

associated with the operators /(I), / (0), /" (1), /” (0), It can

be shown that it represents all integral functions such that

(9-1)
r->oo r
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Thus any integral function which satisfies (9-1) is determined

when

(9-2) /(I), /"(I), /9v)(l),...; /(O), /"(O), /av)(0), ...

are given, just as any function regular at the origin is determined

when /(O), /'(O), /''(O), ... are given. This remark suggests a

general problem. Suppose that we are given two increasing

sequences of integers, Pi,2hi ••• Qi> ^2 ’
What conditions

must they satisfy in order that a knowledge of

(9-3) /(^^x)(l), /(^.)(1), ...; /('^x>(0), /(«.)(0), ...

may determine all integral functions of sufficiently slow growth ?

At the moment we are not concerned with the class of functions

to be determined, i.e. with the analogue of (9-1). All we want to

secure is that there shall be, so to speak, just enough derivatives

assigned. In other words, that the operators (9-3) shall form a

basic set.

Now it is clear that the matrix of these operators is row-finite

and it will have a unique row-finite reciprocal if and only if

there is a unique set of polynomials 7r,^{z), (z) such that

[7r('>(l) = l, t=p„;

(9-4)
-j

=0, t = p, (r + w);

U«(9) = 0, t = q, (r>l).

,e{0) = l, t= q„;

(9-5) - =0, t = q^ +
ie(l) = 0, t=p, (r^l).

A set of polynomials satisfying these equations will be called

a standard set in relation to the pair of sequences {Pi, p^, •••;

?2 > •••); which will be written briefly (p; q). If (9-3) is basic so

that there is a unique standard set, the pair {p; q) will be said to

be complete. If more than one standard set exists, (p; q) will be

called indeterminate and, if no standard set exists, redundant.

The three cases can be distinguished by means of the function

D (m) defined as follows

:

(9-6) D (m) = number of p’s and q's which are less than m.
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Theorem 9. In order that a pair {p; q) may he complete it is

necessary and sufficient that

(9-7) D{m)'^m (m^l),

and

(9-8) D (m^) = m^
,
for an infinite sequence m^

,
m.^

If one or more p's and q's are removed from a complete pair it

becomes indeterminate ; and, conversely, an indeterminate pair can

be made complete by adding p's and q's.

We need an algebraic theorem due to Aitken and Zia-uddin.*

L305 . If CL, b, a', b', ... are positive integers satisfying the

inequalities a <b < ., . <k, I A A A

a' ^ a, h'^h, ..., k'^k,

then (a, a') {b,a'} ... {A:, a'j
j

^ k
[a, b'} {b, b'} ... {k,h'}

{a,k'} {b,k'} ... {k,k'}
\

where {a, a‘ z=a{a--l){a- 2).

and the determinant may be of any order.

To prove Theorem 9 (5), assume in the first place that (9-7),

(9-8) are satisfied. Let
,
Wg

,
... be the se(pience complementary

to qi,q2 ,
••• with respect to 0, 1, 2, ... ,

and let

V (m) = number of v's which are less than m.

Similarly define P {m), Q {m). Then

V {m) =m— Q (m)

and (9-7) can be written

P{m)'^V{m)
or

(9-9) (^^1)-

To determine 7t„ {z) for some fixed value of n, choose N to be

any one of the integers m^, m^, ... which is such that V {N) ^ n.

* Zia-uddin (1).
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and assume that 77„(z) is of degree less than N. If we write

F (JV) = F it is clear that (z) must be of the form

+ • • • + dyZ'^'r.

For the last condition of (9-4) requires that only v’s can occur as

indices and Vy is the largest v less than N. The remaining con-

ditions of (9-4) furnish F equations to determine the coefficients

dj, ^2 ,
namely

(9-10)

Pl} + d2{'>’2,Pl} + — +dy{Vy, =

dl{Vl,p^+>>> -\-dy{Vy, P^ — 0,

1
dy {«! , Pn] + • • • +dy{Vy, pj= 1,

dy {^'yiPvl'^ ••• dy \Vy
^ pf1 — ^

•

The inequalities of L305 being satisfied in virtue of (9-9), these

equations have a non-zero determinant and so a unique solution.

Since N may be arbitrarily large, it follows that there is one and

only one polynomial 7t,j(2 ) satisfying (9-4). The existence of a

unique set of polynomials (2) is established in the same way,

and the pair (p; g') is therefore complete.

Next suppose that (9-7) is satisfied but that (9-8) is not, so that

(9-11) D(m)>w {m'^M).

M may be taken to be the smallest integer for which this is true.

D{M)>M.

— 1 is therefore both a p and a q. Omit M — considered as

a q, from the pair of sequences. Then we are left with a new pair

forwhich (9-7) is satisfied. Ifthis pair does not satisfy
(
9 - 8

), (
9 - 11

)

must be true with M' >M in place of M. We can now omit

another q, and so on. In this way a pair (p; w) is obtained,

... being a subsequence oiqi,q^, ... for which (9-7), (9-8)

are satisfied. This pair is therefore complete.

Let g,„ be one of the omitted g’s. If a standard set of poly-
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nomials in relation to the pair (p-,q) exists, the polynomial (z)

is such that
a.(0)_0, ( =

Constant multiples of {z) can therefore be added to the poly-

nomials of the standard set attached to the pair (p; w) without

destroying their properties; and, since is not identically

zero, the pair (p; w) cannot be complete. The contradiction

imphes that (p; ?) is redundant.

If (9*7) is not satisfied, so that

D{M)<M
for some M, it is clear that a non-zero polynomial p {z) of degree

M —I can be determined so that

/
3®( 1

)
= 0

, t=^J)i,Po,...,

p(«(0) = 0 , t = qT^,(p^, ....

For these are P (M) + Q {M) —D {M) <M equations to determine

M coefficients. If a standard set of polynomials exists, constant

multiples of p {z) can be added to them without destroying their

properties. Thus the pair cannot be complete.

Next suppose that some p’s and q’s are removed from a com-

plete pair (p; q). Let P {z) be the polynomial corresponding to

an omitted integer. Then XF (z), where A is any constant, can be

added to the surviving polynomials without destroying their

property of being standard with respect to the surviving p’s and

q’s,. Hence the new pair of sequences is indeterminate.

Finally supj)ose that (p; q) is an indeterminate pair. It has

been seen that in this case (9-7) cannot be satisfied. Then let M
be the first integer such that

D{M)<M.
Augment (p; q) by adding to it, in order, firstly to the p-sequence

and secondly to the g'-sequence, such of 0, 1, 2, ... as are not

already in them, until a pair is constructed for which

If (9-7) is still not satisfied repeat the process, and so on. The
resulting pair (p'; q') satisfies (9-7).

WIF 4
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li{p'-,q') is not complete there is an integer L such that

’ \d'(L-1) = L-1.

This being so it is clear that all p’s and q's which are greater

than L— 2 belong to the original sequence (p; q), e.g. if

(p;g') = (2,3,...;2), then (p';g'') = (0, 2, 3, 0, 2),

and these are identical for p,q>l.

Let ?^(z)} be a standard set associated with (p; q).

Then (z), (z)} is a standard set associated with the pair

formed by removing from {p; q) those members which are less

than L—1, and subtracting L — 1 from the survivors; and this is

the same as the pair
(
p"

;
q") formed by applying the same process

to (p'; q'). Now (p”; q") satisfies the condition

(9-13) D"{ni)>m (m>l),

since, using (9-12),

D"{m~L+l) = D'(m)-D'{L-l) {m^ L)

>m — L+\.

It has been seen that (9-13) implies that (p"; q") is redundant,

and this is impossible since the pair has a standard set associated

with it. The contradiction implies that (p'; g') is complete.

Theorem 9 has an interesting corollary.

Lgog . A set of operators ( 1 ), f^^^ ( 1 ), . .
. ; (0), ... cannot be

basic unless it is regular.

If (p; q) is a complete pair it follows from that the series

represents all integral functions of sufficiently slow growth, i.e.

all which satisfy a condition

(9-14) |a„|<(^(»).

Moreover, if are sufficiently small there is a unique

function of this class such that

(9-15) /9'«)(1) = 4„, = {n^\),

namely the function

(9-16) A^TTi{z)->t- ... +

+

—



PROPERTIES OF SUCCESSIVE DERIVATIVES 51

For evidently there exists a positive function i/j {n) which is such

that, if

(
9 - 17

)
\A,\ + \B,\<,p{7i),

then the function (9*16) satisfies (9*14).

If {p; q) is an indeterminate pair we have seen that it can be

augmented into a complete pair (p'; q'), so that, if

l^ftl + I ^nl <•/'' (^)>

more than one solution of (9-15) exists. Lastly, if (p; q) is re-

dundant, there exists a set of values of
,
tending to zero

as rapidly as we please, such that no function satisfying (9* 14)

and (9- 15) exists. Thus it may be said that a complete pair eon-

tains justenoughconditionsto determine a function of sufficiently

slow growth, an indeterminate pair too few, and a redundant

pair too many.

We may ask a further question. Suppose that/(z), g{z) are any

integral functions and (p; q) any complete pair. Is it always

possible to find an integral function h (z) such that

(9-18) /^(?^«>(1) =/(»«>(!), A<''»>(0) = gr(«n>(0) (n^l),

and, if so, what can be said about the order of h (z) ? In the case

when (p; q) is the Lidstone pair (0, 2, 4, ...; 0, 2, 4, ...) the ques-

tion can be answered without much difficulty by making use of

Theorem 3. h (z) exists and can be chosen of order not exceeding

the greater of the orders of/(z), g(z). Indeed this result is equi-

valent to Theorem 3—either can be deduced from the other by

elementary reasoning. The case of an arbitrary complete pair

seems to be very difficult, and no progress has been made.

4-2



CHAPTER IV

INTERPOLATION AT THE INTEGERS

§10. The Gregory-Newton series.

The earliest basic series was discovered by James Gregory in

1670. This is the series*

(10-1) f{0) + zAf{0) + A3/(0) + ...,

where

(10-2) A/(0)=/(l)-/(0),

AV(0) = A/(l)-A/(0)=/(2)-2/(l)+/(0),...

which solves the fundamental problem of interpolation, that of

finding a polynomial of degree n (or less) which takes given values

/(0),/(l), ...,/(n) at 2 = 0, 1, The series has been extensively

studiedf and has important applications.

Theorem 10. (i) Let f{z) be an integralJunction which satisfies

the condition

(10-3) log 2.

r —>00 ^

Then the series (10-1) converges to f{z) uniformly in any finite

region of the 'plane.

(ii) Let do> ••• sequence such that

(10-4) lim
I

= 1.

Then the series

(10-5) do+ zd^ + ^-^~^-^d^+...

* See Whittaker and Robinson (1), Chapter i.

t The account given below is mainly based on Landau (1) and Okada (1).

Norlund
(
1 , 2 )

gives a much longer and more detailed discussion.
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converges uniformly in any finite region of the plane to an integral

function g (z) which satisfies the condition

(10-6)

It is readily proved by induction that

1 _1 z z(z — \) z{z—\)...[z — n+\)
i^z^l^t (f^) t(t-l){t-Y) ~t(f-l («-%[

so that/ (2):
1 r /(<)

2(2— 1 ) ... (2— »)
' r{t^\ )T.

.
{f-i^(t-z) ’

277-i ] r^t — z

(10-7) =/(0) + 2A/(()) + ...+^-^---^^|—

1 f 2
(
2 - 1 ). ..(2-7t)/(<)

277i 1) ••• (<-'«)

where 0^ may be taken to be the circle
|
^

|

= 2/;,, sup])08ed large

enough to enclose the given region of the 2-plane.

Now, writing 2 (2 — 1) ... (2 — w) = (
— )”•%!«„ {2), we have

tt,,_l(2) w’

so that (2)
~ lv~- (1 4= 0),

and
I

(2)
I

< Kn-^' {z = x + iy).

Thus the remainder term in (10-7), say, satisfies the inequality

I
jR \<Kn~-'^n^{ I

i

(10-8)
Kn~^

where P,
^TT

I

— n\\ Y
~

—

J-rrK^-
r*7T

<Kn\ e^’^^

fit) _ L.
{t-l)...{t-n)\

I

, r dO

dd {t = 2ne*^)

de (A < log 2)

(10-9) ^ <^e2n(A-iog2)^

«/ 7T TT f o r%r\cs n\" n {
2n — s cos 6}

S^l
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I

i — s I

=y'{'ivP‘— 4kns<iOS,6+ s'^) ^ 2n— seos6 (1 ^s^n),
[‘n fja

and

n{2% — s cos 0}

The last inequality is proved as follows. We have

n !
22«--— = % !

22«
.
= 2 .

22« ^ Vto,^ !

22n = % !
22« = 2 .

22" - ^ V TO

n(2TO-.)
.s=l

SO it is enough to show that

where '

,
^02 0i 02 0i 02 IQ02 02

Now I_coe«=. +

for — 7T < 0 ^ 77, and

-J.. ^ e-i/+ii/2 ^ e-y+iv = e-iy (0 ^ y < 1),

so that, for

1-^
1 —r] COS 6

0 ^ q ^ I ,
— 77 ^ ^ 77,

1-q
< g~lr;(l-cos^) ^ _

Hence if){d,n)= 11

-1 1_^COS0
2to

6)2 »

< e“ 4^^) s=/

==e—

(

— 77<0<77, to=1,2,...),

J’'
./.(0,TO)d0<J“ e m^'de<4^.

The first part of Theorem 10 follows from (10-8), (10-9). To prove

the second part, take l>k so that

1 i
< (to > N).
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Then

»-(r+l)...(r + iV-l),^
, ,

r{»-+l)...(r + iV),^^j
|%j+

+
r (r + 1) ... (r + iV+ 1)

{N + 2)\
-'P+2+...<P(f) +

where P (r) is a polynomial of degree N. Hence

G— logM (r) . 1
lina — <log -
r~>oo • XV

and (10-6) follows.

A corollary of '^fheorem 10 is the beautifid theorem of Polya

and Hardy,* “ 2® is the smallest transcendental integral function

which takes integral values at z= 0, 1, 2, ...”. More precisely,

Theorem 1 1 . iff{z) is an integralfunction which satisfies ( 10-3)

and i//(0),/(l), ••• (iTe integers, then f(z) is a polynomial.

For, by Theorem 10,

/(-l)=/(0)-A/(0) + A2/(0)-...,

and, as this series is convergent,

|A"/(0)|<1 {n>N).

But, by ( 10-2), A/(0), A^/ (0), . . . are all integers (or zero). Hence

A"/(0) = 0 {n>N),

and so (lOT), which represents /(z), reduces to a polynomial of

degree N—1.
Singularities of Taylor series. Some important theorems rela-

ting the singularities of a Taylor series on its circle of convergence

to the size and density ofthe coefficients depend on interpolatory

principles. We prove the simplest of these, commending to the

reader a long memoir of Polya (5) and Bernstein’s tract (1) for a

fuller discussion and for further references.

* P61ya (
1

)
proved the theorem with an additional factor Vr in (lO-S). Th^

was removed by Hardy (
1 ). P61ya

(
3 )

has since proved a more precise

(10-3) being replaced by lirn 2“’" 3/ (r)< 1.



56 INTERPOLATION AT THE INTEGERS

Theorem 12. Letf{z) = z'^ be regular in\z\<l and letz=l

be the only singularity on
|

2
|

= 1 and let it be an isolated non-

critical singularity.* Then

(10-10) a.,^ = g{n) + b„,

where g (
2

)
is an integral function satisfying the condition

logM (r)

(
10 - 11

)

and

->0,

(10-12) iTm
71 ->00

This result is due to Wigert* (1). To prove it, consider the

Laurent expansion
00/1 00

f(z) = S
,,
+ i: B„

(
2- 1)« ==F(z} + G (

2
)

(say).

This converges at all points near z — 1, so is an integral

function of w and F
(
2 )
= Sc„ 2” has no singularities except 2 = 1 .

0(z)=f{z) — F{z) has therefoi-e no singularities except those of

f{z) other than 2 = 1
,

i.e. it is regular in
|

2
|

< i?, where i?> 1.

Hence 0{z) = 'Lb,^z'^, where satisfies (10-12).

Again, it has been seen that F {z) is an integral function of

(1 — 2)“^ and so of 2 (1 — 2)“^ = (1 — 2)~^— 1. Hence

(l-2)J^M2)=J^d„(-^-J' (|2|<1, |djl'«^0),

00 OP

or S c„2^'= S d„2”(l — 2)“"“^,

n = 0 w - 0

and, on expanding the terms on the right and equating coeffi-

cients,

(10-13) = + + + (71 = 0,1,2,...).

By the second part of Theorem 10,

_ ^ ziz—\) ,

+ zd^ +—2

1

^^2 + • • •

* I.e. there is a circle, centre 2;= 1, in which/ (z) is uniform and at each point

of which (except z=l) f (z) is regular.

t For related results due to Faber, Carlson, Lean, etc., see Dienes (1), 337 ff.
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converges to an integral function g (z) which satisfies (10-11), and

(10-13) is c„ =g(n).

The singularities are related to the density of the coefficients

by means of a theorem stated and used for this purpose by

Faber ( 1 ), to the effect that iff{z) is an integral function satisfying

(10-11) and if a > 0, then

(10-14) |/(»)|>e-“'^

for almost all positive integers n, i.e. N (r), the number ofintegers

not greater than r for which (10-14) is false, is such that

(10-15) as r->oo.
r

It follows from this result that the density of the coefficients

in Theorem 12 is unity, i.e. that almost all ofthem are different

from zero. For by (10-10), (10-12), if = 0,

and this is false for almost all integers n.

The theorem of Faber-Polya. Faber’s proof that (10-14) is true

for almost all n was not complete. The defect was remedied, many
years later, by Polya

(
1

,
Part II, Satz V). The proof given below

is founded on Polya’s but seems better adapted for dealing with

similar theorems, e.g. the corresponding result for functions of

order two. It depends on an inequality for functions regular in

the unit circle.

^401 - F^t

(i) / (
2 ) be regular in

|

2
|

< 1 ;

(ii) |/(z)
I (|2| < 1);

(iii) |/(a,.)i<i. =

Gq

,

Uj
,

a being any distinct points w
|

2
|

< x < 1 . Then

(10-16) 1/(2) I
j4^iLA(2r)^ (I

2 Nr),

where
N IA= s n',

fc=0 i I I

(10-17)
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n' means that i = is to be omitted. The proof depends on
i

approximating to/

(

2
)
by interpolation at the points . Write

so that

Giz)= n
fc.H) z-a*

is regular in
|

2|<1. Note for future reference that

|6^(2)| = 1 (|z| = 1).

Evidently

u — v
^

\u\ + \v\

l—ilv ^ i + I
R

I I
W

I

pj
/

(I
'a

I

< 1,
I
'«

I

< 1).

:(l+rT'n,. (say).

Hence, on I z I
= 1,

V /(«*) „ xn/ ^ -̂ -(1+tT 2 n,,
1 — T /c=()Clj^

(
Clj^ Cf/^

I

1 T /^*=

using the fact that
|

1 —
|

= 1 —
|

^ ^ 1

.

The maximum modulus principle now gives

l/^(z)i<J/ + ~^(l+T2)^^A (12|<1),

and so, for
|

2: 1 r,

1/(2) I'-|(?(2)|

I ^ fM
(1+t2)^

1 —

T

I s (I d a )n'
I

A*=0 t ^k^ I i ^k

2t \‘^+i
{ L

T^l)
{if + y-^d+rrA

/ 2t

L / 2t V

2t W+1

(1+tTA

^^VxA(2r)^(i±^),

which gives {10-16).

The Paber-Polya theorem will be proved in the following more

general form.
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Theorem 13. Letf{z) be an integral function such that

(
10 - 18)

and let a., X be given positive numbers. Then

(10-19) |/(z)|>e-“'‘
I

z
I
< A(?i + 1)),

for almost every integer n.

Denoting by / (r) the number of integers not greater than r for

which (10-19) is false, the result is equivalent to

(10-20)

Let bQ,b^, ... be points in (0 < |

2
|
^ A), (A ^ |

z
|
< 2A), . . . respect-

ively at which |/(z)
|

attains its minimum value. Evidently

I I I I

^ ^) (& = 0, 1, . . /I 1),

l^2/ci-i^2«l {k= n+\,n + 2,...).

Let R be a “large” positive number, y a “small” one, and

Cq, c-i, ..., the 6’s of even suffix in

yR^\z\^\R
for which

(10-21) |./(6Jl<^^-“"-

Write g{z)=f{Rz), = (w = 0, 1, ..., v),

and apply (10-16) to the first iV-f- 1 (iV will be chosen later) of

these a's. Evidently

I I
> I I

-
I I =^(| I

-
I
Cfc i)

^^{n-k) {}c= 0,l, ...,n-l),

\<^k-0'n\>^{k-n) (fc = »-f 1,74-1-2, ...),

so that

\ A j ;t=0 A;(A:- 1) ... 2. 1 . 1 . 2 . ... {N-T)

_(RY^ (R2eY
“\A; i^^\AiV/ ’
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and (10-16) gives (with t= i)

/4\ K'+1

(10-22) |sr(2)|<i(f(i2)(-|
(-A2\r)

Let )8 satisfy the inequalities

Evidently such a number exists and

1 2e
(10-23) tlog- + t log--- < lay (0<^</3).

t A
“

Now I (r) = (r) -|- /g (r), where (r) is the number of 6’s of even

suffix in
I

2
I
< r for which (10-21) is satisfied, /g (r) the number of

those of odd suffix. Hence, if (10-20) is false, either

lim > 0 or hm - > 0.
r r

Take the first hypothesis, so that

(7?=i?i,ii!g,...),

and, if y < Ih,

v{R)^l^(hR)-yR>\hR {R = 2R^,2R^ ...).

Now take t = min (j8, \h), N = {Rt\ = Rt'

,

R being one of the sequence 2i?j, 2jBg, .... Then I' > It and, by

(10-23),

1 2e
— ay -f- f' log 4- 1' log ;r < — |ay.

t A
“

Hence (10-22) gives

I

gr(2
) I
< if (.R) (|)i^+^-f 8exp{— layjSjHoO as R = 2R^->co.

The contradiction implies that I-^{r) = o{r), and similarly

I^{r) = o{r).

Exceptional values. Pfluger and Polya (1) have recently made
an elegant application of Theorem 10 to prove the following

result.



INTERPOLATION AT THE INTEGERS 61

Theorem 14 . Ifan integralfunction offinite orderp has a Borel

exceptional value, its power series has a density equal to one of the

The density is defined as the limit of q„jn as n -> oo, q,^ being the

number of coefficients which do not vanish. The limit may not, of

course, exist. Only functions of integral order p can possess a

Borel exceptional value, and a will be such a value for O (s) if and

0 {z) = a + e^^''F{z),

where 6 is a constant other than zero, and F (z) is an integral

function of order less than p. All the fractions mentioned in

Theorem 14 may arise, as is shown by the functions

all of which have the exceptional value 0.

Theorem 14 is deduced from the following more general result.

L402 • Let p be a positive integer and let

G {z) = (2;) = Cq + -f . .
.

,

where F {z) is an integral function either of order less than p, or of

minimum type of order p. Then the sequeiice

5 5 ^'k f 2p >

has the density 1, unless all its terms are zero.

Theorem 14 is deduced by putting ^ = 0, 1, — 1.

ff L402 can be proved in the simplest case p = 1
,

^* = 0
,
it can be

proved generally. Tor, if 0 < A: <p and P =

where

/(2 )
=

+ <^k+p 2 + Ck+2p z^+...=e~f{z),

F {z^li>) + F (Pz^lP) + . . . + p-(i>-^i)fe F {pp-^z^ip)

pz‘kIp

and this f(z) satisfies (lO’ll). Thus, if L4Q2 is true for p=l, either

f(z) vanishes or its power series has density 1.

The case ^ = 1 is dealt with by writing

z{z—l)...{z — k+l)CO ^ ^n
F(z)= 2

n=o n\
<f>iz)= 2 a.fc

fc=0 A;!
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The hypothesis is that F {z) satisfies (lOTl), and Theorem 10

shows that
<f> (

2
)
also satisfies it. Now

oc' ca ^ 00 yn n /^\ 00

'F{z)= S S ^ S S r %= S
A = 0J=0 (? = l

2"
<f>

(n)

nl

and the number of <^(0), (f>{l), (f>{n) which vanish does not

exceed the number of zeros of
(f> (

2
) in

|

2
]
^ 71 . As ^ (

2
)
satisfies

(lOTl), this number is o(n).

§11. The Newton-Gauss series and the cardinal series.

There are two formulae for interpolation at the jioints 0, + 71
,

the Newton-Gauss series*

(U-l) /(0) + ]2A/(0) + ^-^^‘Gv(-J)

+ A3/( - AV( _ 2,K ...

and the cardinal series

(11-2)
sin772 r/(0)

^

( /(^O
I

/(-^O
j

^ L ^ n^l \z — 7l Z-\-7l )J

Steflfenseii (1) and E. T. Whittaker (1) showed that under

certain conditions these series converge to the same sum and the

precise relationship was discovered by Ferrar
(
1 ).

// ( 1 1 • 2) cotivergent, (11-1) converges to the same sum. // ( 1 1 • 1

)

is convergent, (11-2) is su7nmable by the method of de la Vallee

Poussin to the sa7ne sum.

The class of functions represented by (11*1) has been discussed

by Norlund (1, 2). It includes all integral functions satisfying

(10-11). The cardinal series represents a much more restricted

class of integral functions—all of order one.

* Whittaker and Robinson
(
1 ), Chapter m. From the theory of functions

point of view the Gauss, Stirling and Bessel formulae are essentially the same.

It will be noticed that the terms of the Gauss series have been bracketed in

pairs.
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Ferrar’s result, in a more general form, can be deduced from

the fundamental identity,

(11-3) /(eo) + (3-eo)/(eo,ei) + ... + (2-eo)...

.. „ \ 1 V f(^i)

1-^)9

where

(11-4) /(fo>ei) =

f{eo, 61,62) =

f{ei)-f{6o)

Ci-Cu

The left-hand side of (11-3) is Newton’s divided difference

interpolation formula* and the right-hand side is Lagrange’s

formula. Their identity follows from the fact that both are poly-

nomials of degree n which take any given values /(e^), /(e^), ...,

/(e,J at the points e^, e^, ...,

Let Cl, C2 , ... be a strictly increasing sequence of positive

numbers such that converges and let

(11-5) 11 {z) = z
(1 (2 )

= 3 n |l
j

.

(11-3) gives

(11'6) /(b)-l-z/(<>, Ci)-H ... +z{z^ — Ci“) X

. .
.
(z2 - c\,_i) (z - c,„)/{0. Cl ,

- Cj , . .
. ,

.
- cJ

-f S
0 1-^ H (^m) ^»i) ^ n (^»i) ('^

rf(o) ^

= 11Jz) S cf>{n,m)
^ ^ ni=^ 0

where

fi^m) ^
H' (c,„j (2 -cj H' (cj {z + cj

(11-7) n
^ n \^m) i^n+l\ /

* Whittaker and Robinson
(
1 ), Chapter ii.
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Let X{n) be a decreasing positive function such that SA(n)

converges and let

Ip {n, m) — n
I A(»«)t

(m = 0, 1,

tt

If U,^= S ip{n,m)ti„t->U as %-»oo,
m=0

the series may be said to be summable (V.P. A {%)) to sum [7.

This method of summation sums every convergent series to the

correct value.* If A (%) = 1 jn^,

I, u /i
nlnl

,•=«+! \ {n-m)\{n-

so that summabihty (V.P. 1 jn^) is identical with the method used

by de la Vallee Poussin (1) to sum Fourier series. The application

to interpolation follows from (11’6).

Theorem 15. If

(
11 - 8

)
Il{z)[i~f^-

the series

+ V ( ,

n^n \H' (c„
)
{z - C„) H' (C„) (2 + c,„)

j J
is convergent, the series

(11-9) /(0) + {z/(0,Ci) + z(C-Ci)/(0,Ci, -Ci)} + {z(22_c^2)

X /(O, Cl ,
- Cj

, cf) + Z (2^ - Ci^) (z - C.J/(0, Cl ,
- Cl , 0-2 ,

- Co)} + . .

.

converges to the same sum. If (11-9) is convergent, (11-8) is sum-

mable (V.P. l/c„^) to the same sum.

Ferrar’s result is the case c,^ = w. It follows from it that, if the

sequence {f(n)] is bounded for all positive and negative values

of n, the series (IIT), (11-2) are equivalent, being either both

divergent or both convergent to the same sum. For, if (IIT) is

convergent, (11'2) is summable by the method of de la Vallee

Poussin and hence by the Abel limit;"} but the general term of

(11.2)is0(i) and so, by Littlewood’s converse ofAbel’s theorem,

(11-2) is convergent
( 1 ).

* Necessary and sufficient conditions that this should he the case will bo

found in Dienes (1), 396. It is easy to verify that they are satisfied here,

t Cf. Gronwall (1).
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The Fourier theory.* The cardinal series is closely connected

with certain aspects of the theory of Fourier series and integrals.

The first result in this direction, due to E. T. Whittaker
(
1 ),

asserts that, under sufficiently strong conditions, the cardinal

function can be resolved by Fourier’s integral and that all com-

ponents of period less than 2 will be absent. The conditions can

be relaxed considerably by introducing Stieltjes integrals, as

originally defined by Stieltjes; that is to say,

(11-10) f f{x)dg{x) = \im S /(^r){Sf
Ja A->0r-l

where A = max {x^ — and is any point of
,
x^). We need

two properties of the integral.

^403 • If

(i) V/p(^)+l/pWl<^ (allp);

(ii) fj, {x)->f{x) (a^x^b)

;

(iii) g{x) is continuous in (a, b);

then

(11-11)
\
U{x)dg{x)-^{ f{x)d(j{x).

J a J a

L404 . If \ g ((t) d<l) (:r) exists andf(x) is bounded in (a, 6),

J a

(11-12) f /(a:)#(a;)=f f{x)g{x)d<f>{x),
J a J a

'A(*)=f 9{t)d<f>{t),
J a

where

whenever either integral in (11-12) exists.

The first ofthese is due to Hahn ( 1 , 84), the second to Hyslop ( 1 ),

extending a result of Carleman.

Let us say that the series

(11-13)

00

|aQ-f S (a„ cos -f sin wrr)

n=l

* In this subsection all the numbers concerned are real.

WIF 5



66 INTERPOLATION AT THE INTEGERS

is a “ Fourier-Stieltjes ” series if there is a continuous function

F {x) such that

I
/it

]
^7T

(1M4) — -
I

dF (x), a.^ — -
I eosnxdF (x),

^ J — TT J — TT

= - sin nxdF (x).

^ J — TT

L405 . The necessary and sufficient condition that (11-13) should

be a Fourier-Stieltjes series is that

°° 1

S - (a„ sin nx — cos wa;)

n=i

should be the Fourier series of a continuous function 0(x), the

functions F {x), G [x) being connected by the equation

F {x) = G{x)-\-\aQX.

To prove the necessity of the condition, integrate by parts in

(11-14). Then
“cos nxF (x)']’^ n

a„

(11-15)

since

Similarly

(11-16)

rcosRa;F (x)!’^ n C'" „ , . . ,
: +_ F {x)smnxdx
L ^ J — TT J —IT

n
= ( — Y%+1 (^) sin nxdx

J —TT

= “ G{x)fm\nxdx,
TtJ -TT

nj -TT

n
6„ =— I

G (x) cos nxdx.
J —TT

Thus — bjn, ajn are the Fourier coefficients of G (a;), and the

latter is evidently continuous. Again, the condition is sufficient.

For, if it is satisfied, (11-15), (11-16) are true and, on integrating

by parts, we obtain (11-14).
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Returning to the cardinal function, assume that . . . ,
a_2

, a_i

,

Uq, a^, Uj) ••• is a sequence such that

(11-17)

QO
I

00 1 00 J
S - {a^^ + sin unt, 2 (a„ — ) cos iriit

n=l

^

then converge to continuous functions, so, by there are

continuous functions O {t), T (^), such that

aO= f d<S>{t), + f COS77/^ic^<l> (^),

Jo “ Jo

J sin7r/?ic?T(^),

whence, for all the values of

(1M8) a„==J’ {cos Trntd*^ {t) + sin -nnldY (<)}.

Consider now the Fourier series of cos -iTxt, sinTTa;^, considered

as functions of t, namely

(1M9)

inwa; (1 S , ,
/I 1 \)

]
- + S

(
— )“ cos TTUt

I
1

;— ) [

,

77- [x n=i \x — n x + n))

inwa; ^ . /I 1 \

77 n-^i \x— n x+ nj

As cosTTXt, sinTTa:^ are bounded and of bounded variation in

a^t^b, condition (i) of L4Q3 is satisfied, where (a;) denotes the

pth. partial Cesaro sum of either of the Fourier series.* Again,

since the functions are continuous, (0 converges to cos irxt,

sin TTXt, and condition (ii) is satisfied. Hence, given any function

of the form

(11-20) /(^) =J
{coS77a:id<l>(i) + sin7ra:<d'F(i)},

where {t), ^ (<) are continuous functions, it is permissible to

substitute the series (11-19) in the integral and then to integrate

•• Hobson ( 1 ), 560, 580.

5-2
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term by term, the resulting series being summable (0, 1), i.e. the

series

(
11 -21

)

Sinara: r/(0)

^

( - )»

V [_
a; ^ \x — n x + n )_

is summable {C, 1) and its sum isf{x).

If (1 1-17) is satisfied, the cardinal series is evidently absolutely

convergent and a comparison of (11-18), (11-20) shows that

/ (n) = . The following result has therefore been established (2)

.

Theorem 16. Given any function f {x) of the form

(11-22) f {cos 7ra;<dO (i).+ sin 77a;/cZ'F (i)} [0(/),
J 0

T (t) continuous functions],

the series (11-21) is summable {C, 1) and its sum isf(x).

// (11-17) is satisfied, the cardinal series

sin ttx
(11-23)

TT .X ..1

II I ^ \
\x — n x + n)

is absolutely convergent and its sum is of the form (11-22).

This result enables us to deal with a remarkable property ofthe

cardinal series discovered by Ferrar (1,2), and called by him its

“consistency”.* Its genesis is as follows. Suppose that we are

given n points and that we draw through them, by means of

Newton’s formula, a curve of degree n—1. On this curve take any

other n points. Since only one curve of degree n—\ can be drawn

through n points, the curve obtained by applying Newton’s

formula to the new points will be the same as the first curve. The

interpolation curve can therefore reproduce itself from any n
points on it, unless of course these lie on a curve of lower degree.

Ferrar showed that the cardinal series has a property of the same

nature. IfC {x) is the cardinal series for the points (a + nw, afj, i.e.

(7(x) = -2a
77

n

sin -(x — a — nw)
w
X—a— nw

* The corresponding property of the Gregory-Newton series had been

investigated by Ndriund
(
1 ).
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and if w’ < w, then the cardinal series {x) for the points

{b + nw', C

(

6 + %w')} is identical with C{x), provided that (11-17)

is satisfied. The case iv' = w is more difficult. Ferrar pointed out

that the series inversion formulae due to Titchmarsh (1,2) were

equivalent to asserting that (n) = C (n), provided that 2
|

a,, p'

is convergent for some p > 1
;
and he proved that, on this hypo-

thesis, Cl (x) = C (a:) for all x. The result which follows asserts

consistency on a weaker hypothesis
(
2 ).

Theorem 17. If

(11-24) 2 (|oJ-t-|a_„ 1)*^^- <00,
I
— «•> ft

so that the cardinal series (11-23) is absolutely cojwergent, and A is

any real number,

(11.25) i

the series on the right bemg absolutely convergent. Merrcover

1
(11-26) |C'(A)|+ 2 -{| 0(a + A)| + |

C7(-«. + A)|}
11=1

< ^ (A)
1 1

(*0
I
+

I
^'1

1
+

I I

+ 2 ( I I
+

I I

log TO

TO

where A (A) depends only on A.

Theorem 16 shows that C (x) is of the form

j* (cos TTxtd^ {t) -f- sin 77a;<dT’ (t)},

so that, making use of L404 ,

C (a; -h A) =J
[cos nxt {cos rrXtd^ (t) -f- sin nXldY (<)}

+ sin TTXt
(
— sin rrXtd^ (t) + cos rrXtdW (f )}]

=J
[cos TTXtd^i (<) -I- sin nxtdTj (t)],

where <l>i {x) =
|

{cos nXtd^ {t) 4- sin wAfdT (t)},

J 0

Ti (a;) =J
{
— sin nXtd^ (t) 4- cos nXldW (<)}.
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G(x+ A) is thus an integral of the form (11-22), and the first

part of Theorem 16 shows that

sin TTX r +
+
C'C-rt + A)]"

_ X n=i \ x — n x + n j_

is summable {C, 1) to 6'(«+ A); or, changing a; to a: — A, that

0
sin TT (a; -A) re (A

)
^ ^

77 - A „„ 1

'

e(w + A) G{-n + X)

x — \ — n X — X + n

is summable {G, 1) to 0 (a:).

To prove (11-26), take for simplicity the case 0 < A < 1. Then

C(» + A)|<l|sin,A| £

SO that

N 1 1
V j

CO I ^
S ^|C'(» + A)|<-^|sm^A| S - E

/t 1 ^ fi=\7b — 00
I

^ “r A

N
= —

I

sin ttA
I

! 2)
I

a_j.
|
E

77

-r\

1 OO N
+ S

I
aJ E

,.^.0 ,j=iw(w + A + r) ''„=!%
I

»+ A-r

Now, if 1,

^ 5 s
^

"I

n^in{n + X + r) n^in{n + r) r„^]\n n + rj

and

N
E

V 1 1 + log^

'/'«=!» r

1 r 1

= y
1

^
:+ S

1

^in\n + X — r\ „^iw(r — » — A) n(n + X— r)

N-r j1
r-l /l 2 \ N-,

=^ E ~+ A+ S
r-Xn=i\n r-n-XJ

<

,^o{n + r) (w + A)

1 1 1 'T'^ 1) 1
+ S T + S

r-AU^i^i ::,(n + r)(n + X)

logr
<^:3^|2-flogr +i— (A)

I

e ( — n + A)
1

can be discussed similarly. It is not difficult to see

that A (A) is a continuous function of A.
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The consistency theorem is the analogue for series of the well-

known inversion theorem that, under certain conditions,

F{X):
y:

dt.

the integral being defined as a principal value when f = x, implies

that

,t — x
dt

almost everywhere. Titchmarsh
(
1

)
has in fact deduced this

result, on the hypothesis

dx < 00 (p> 1),

from his inversion formulae for series referred to above.

Theorems 16, 17 do not apply to the general partial fraction

series (11*8). The cardinal series is particularly fixvoured because

the integral function H {z) associated with it happens to be sin ttz

and this has several very special properties. Thus it is orthogonal

relative to its own zeros,

(11-27) = 0 (% + m),

with ^ (^) = 1
,
and this gives rise to Theorem 16 . A similar

theorem holds if
,
the nt\\ positive zero of Jq {z). For then

H {z) = zJq{z), and
(
11 * 27

)
is true with ^(^) = 1 /^. Again, the

proof of Theorem 17 depends on the fact that sinTrs; has an addi-

tion theorem, and this property is not possessed by any other

H{z)^ the so-called addition theorem for Bessel functions not

being an adequate substitute.

The cardinal series has been extensively studied. See Ferrar

(
1

, 2 ,
3 ), Copson (

1
,
2

,
3 ), Ogura (

1 ), Polya (2 ), Miss Cartwright

(
1

,
2 ), Tschakaloff ( 1 ) for investigations concerning its connection

with Hardy’s
‘

' m-functions ”, its zeros, its integralrepresentations,

etc. Other references will be found in these papers.



CHAPTEE V

INTERPOLATION AT THE LATTICE POINTS

§12. The two-dimensional cardinal series.

Interpolation at the lattice points can be effected by means of

a series analogous to (11-2). To replace sinwz we need an integral

function with simple zeros at the lattice points. Such a function

is the Weierstrass sigma function formed with periods J
,
i,

(
12-

1

) a{z) = d-i {ttz
|

(0) tt.

By the properties of the Q^-function,*

(12-2) a{z + m-\-ni)

—
( — a (z) exp { J-TT (m^ + n^) + 77 (m — ni) z},

so that

(12‘3) a' {m + ni) — ( — )™+”^+’"’*'exp{^7T(m2 + w^)}.

L501 . Letf{z) be an integralfunction which satisfies the condition

(12-4)

Then

(12-5)

r -^00 ^ ^

f{z) = a{z)

00

s
m, n—~co

f(m + ni) ^ \m+n+mn g-ijr(m2+M®)
_

z —m—nV
Let Kp denote the square whose corners are (±l±i)(p + 4).

Then, if z is a point inside Kj, other than one of the points m + ni.

. ^ 2
fjm + ni) ^ r _ f

a{z) Kp<^’ {m+ ni) {m + ni- z) 277*

It follows from (12-2), (12-4)thatthe integralon the right tends

to zero as p->oo, and from (12-3), (12-4) that the series

00

S
m, n~ — oo

f{m + ni)

a' {m + ni)

00

converges. These results establish Ljqj^ (3, 6)

.

* Whittaker and Watson (1), 464.
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It will be noticed that (12-5) represents all integi’al functions of

sufficiently slow growth, so in this respect it is analogous to ( 1 1 • 1

)

rather than to (11’2). It came to light during an attempt to settle

a conjecture of Littlewood, that an integral function of order less

than 2 cannot be bounded at the lattice points unless it is a con-

stant. This was established by the methods of the next section,

but Polya (6) has recently found an elegant method of com-

pleting the original argument.

L5Q2 • Letf (z) be an integralfunction ichich satisfies the conditions

( 12
-6

)

logM (r)

(12-7) \f{m+ 7ii)\<K («i,ri = 0
,
+ 1, + 2, ...),

thenf{z) is a coiistant.

For/(A;z), where k is any integer, satisfies (12-4), and so

f{z)=f\k-A=lc<r
;

fjkm + kni)

\^ooZ— k(;m-\-ni)
^

i7r(w2-|.ri,2)

On making k^oo, using (12-7), the only term which survives is

that with m = 0, 71 = 0, and we obtain

f{z)==za' (0)
M

z
=/(0 ).

§13. The “flat” regions of integral and meromorphic
functions.

Results such as can be proved by an entirely different

method. This consists in showing that an integral function of

finite order satisfies the inequality*

(13-1) log|/(z)|>Alogl/(r) (|2|=»-)

in regions as large, though not as numerous, as those in which it

* This result is not connected with, the important theorems of Wiman and
Valiron (1, Chapter iv) on the regions, in the neighbourhood of points at which

/ (z) assumes its maximum modulus, in which the inequality
| / (^)

\

> hM (r) is

Satisfied. It is of the same nature as the theorem of Littlewood, Wiman and

Valiron that a function of order p < 1 satisfies the inequality

I / (^)
I
> (cos 7rp- e) log M (r)

on arbitrarily large circles
|

2
|

= r. See Valiron (1, 128), Besicovitch (1).
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satisfies the inequality \f{z)\>0. The proof is based on the

following lemmas:

L5Q3 . Let r^,r2 ,
bean increasing sequence ofpositive numbers.

Divide the real positive axis into segments ofgiven length A and mark
the points

,
rg

,
... on it. Now shade every seg7nent containing an r,

and its two neighbours. Of the remaining segments shade every one

whose two neighbours on the right contain two or more r^s. Then
every segment whose three neighbours on the right contain three or

more r^s^ and so on. Perform, the same process for neighbouring

segments on the left. Let n (r) denote the number of points r^.r^^ ...

in
(
0

,
r). Then, if

(13-2) asr^ao,
r

almost every segment is unshaded.

By the last statement we mean that

N
(13-3) asN-^co,

where Ng is equal to the number of shaded segments among th e

first N.

Suppose that this is false. Then there is a number h,{0<h<l ),

such that

(13-4)

for arbitrarily large values of N.

n (r)

r
(13-5) <

Find fQ so that

6A

and let be a number greater than 2Aro for which (13-4) is

satisfied.

Let r^,r^, ..., be the r’s in the first segments. Suppose

now that the shading process is carried out in two stages. First

mark in r^, only and perform the process for these

points, and then mark in the other r’s and complete the process.

It is easy to see, by considering simple cases, that at most 3m
segments will be shaded in the first stage. Let k additional seg-

ments among the first be shaded in the second stage. In the
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most unfavourable case (i.e. the case implying the least number
of r’s) these will be the last h. Suppose that this is so. Then, for

some p, the p+ \ segments immediately succeeding the Njth

must contain at least k +p of the points r^. By (13-4),

3m + A; > .

But n{{Ni+p+l)X}'^m + k+p>^~N-i^+p>^^{Ni+p),
O i>

so that n{{N-i^+p)2X}>^{Ni+p),
O

or n,{r)>-^^r,

for r = (iVj +p) 2A ;
which contradicts (13-5), since r > / q .

L5Q4 . Divide the z-pUme into squares of side A by drawing lines

parallel to the axesand markpointsc^ ,C2 ,...on it. Shadeeverysquare

containing a c and the eight neighbouring squares. Of the remaining

squares shade every one whose twenty-four neighbours contain eight

or more cis, and, generally, every square whose fc/ (f/ + 1
) neighbours

contain 4(/ (q—1) or more c's. Let c (r) denote the number of c’s for

which
I I

^ r. Then, if

c(r)
b as r^ CO,

almost every square is unshaded.

The conclusion of the lemma means that

N,—

y

0 cis N ~y oo,N
where Ng is equal to the number of shaded squares among the N
squares nearest the origin. The proof is similar to that of L5Q3 .

L505 . Let f{z) be an integral function of order less than or equal

to 2 satisfying the condition

(13-6) n(r) = o{r^),

and let X, S be given positive numbers. Then, for almost every sqvutre

of side X, drawn as above,

(13-7) |log/(Zi)-log/(z2)|
<ri+8

,

where are any points of the square, and r is the distance of the

centre of the square from the origin.
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n (r) denotes the number ofzeros of/ (z) for which =
| |

^ r

.

Multiple zeros are counted multiply.

There is no loss of generality in taking /(O) = 1 so that/(2
)
is

of the form

(13.8) /(.).exp(te + fe») n_ +

Mark the points a^, a^, ... on the z-plane and shade as in the

last lemma. Then almost every square is unshaded. Take points

Zi, Zg ari unshaded square and denote by the smaller of

|a,-Z2l-Then

Uog/(2l)-log/(Z2)|

<1 A;| |Zi-Z.gi + |Z| |Zi
2 -z^2

|

CO

+ S
S"- 1

< Kr
I
Zi - 2 -2 1

+
00

S
.S—

1

a^-z^ 2(a^-Z2)2 a, 2a/

< Zr
I
Zi - Zg

I
+

I
Zi - Zg

00

2
S—

1

^^2 _
2-2^ (gl + 2=2 )

«s- {C's
-

^2) ^ 2a/ {ag-z^f
crj

I
00 1

<KXr + 2\r^ S s + 2Ar3 S
1

7* ^ oc
^

,s’= 1 ' s

Take e so that 1 — |S < e < 1, and consider the square P of side

(2p + 1) A, wherep = [r^], symmetrically disposed about the square

containing z^ ,
Zg . For points a^ inside P, > \r, so that

r r,

;<?2
,a/ 'r “ a/’ r ‘^/Y 2 r^P a„

Now, since the square containing z^
,
Zg is unshaded, there are no

points ttg in the first ring of squares round it, nor more than seven

in the second ring, nor more than twenty-three in the second and

third ring, etc. Thus

^1^ 7 23-7 4p(p-l)-4(p-l)(p-2)
^a/^A2+ (2A/ {{p-l)Xr

8 1 8
,



INTERPOLATION AT THE LATTICE POINTS 77

Again, applying Holder’s inequality to the sum ofthe remaining

terms of the first series, we have

<K\

/ t1

1

1!

1
“277 \(2-6)/(3-€)

Moreover, if jS > 2 (8 + 2e— 2)“^,

S
CP

1 / \ip-l)lp I \1

S’-.""® s«7“
\cp J \cv 1

a
oo /•27T \l/fl

I u-^^udude\ <Ar(2-2^)c/^.

Since 2-2€/(3-€)< 1 + 8, 3 + (2-2]8)e/|8< 1 + 8,

these results establish the lemma.

Upper and lower density. Let be a plane measurable set of

points, and let m {E, r) be the (plane) measure of the part of E
contained in the circle of centre the origin, radius r. We call

{13-9) DE =\im
m {E, r) DE = iim

m(E,r)

nr^

the lower and upper densities of E. If they are equal, the common
value will be called the density of E.

L506 • IfE^ is any set and E^ a set of density unity, then

D{E^Ef^ = DEi, D{Ey^Ef^^DEi.

The proof is immediate.*

Meromorphic functions of order 2. Let L{<^,d), U {i,d) denote

the bounds of an integral or meromorphic function in the circle

j

2 — ^ I
< (Z, and let n (r, 0), n (r, 00 ) denote, as usual, the number

of zeros and the number of poles of the function in the circle

* The density of a linear set has been defined by Besicovitch (1).
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L507 . Let f{z) be an integral or meromorphic function of order

less than or equal to 2 satisfying the condition

(13-10) n{r,0) + n{r,co) = o{r'^),

and let d, 8 be given positive numbers. Then the values of ^for which

(13-11) Ua,d)^La,d)er^^^ (K|=r)

form a set of unit density.

f(z) can be expressed in the ionn* f^ (z)//2 (z), where (z),/2 (z)

are integral functions satisfying the conditions of . Given e,

take A so that

(13-12)
A2-(A-2d)2

^2

and divide the 2-plane into squares of side A. If C is in the square

of side A— 2a concentric with a square of side A, the inequalities

I

log /i (z) - logfi{0\< I

log fi (z) - log /a (0 I
< ^

where |z — are satisfied for almost every such square.

Thus, for almost every square,

logC7 (^,d)-logL(C,d)

= log
/i(% )

(%)
-log /l (^2 )

A (2^2)

{Zi ,
Z2 points in

1

2

; ~ ^ |
^ rf)

<
I

log 1/1 (
2
l) I

- log 1/1 (Z2)
1 1
+

I

log 1/2 (Zi)
I

- log 1/2 (Z2)
1

1

<
I

log/i (Zi) - log/i (Z2 ) I
-I-

1

log /a (zi) - log /2 (Z2 ) 1

< r1+8

If r is sufficiently large, the squares (of side A) for which this

holds cover a fraction greater than 1 — e of the circle of radius r,

and, by (13-12), the measure of the set of ^ for which the in-

equahty holds is greater than {l — eYTtr^. This is the result

stated.

If/

(

2
)
is of order p < 2, more precise information, which will be

useful later, can be obtained.

* Nevanlinna
(1 ), 40.
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Lggg. If f{z) is an integral or meromorphic function of order

p{l^p<2), and a >hp, the values of ^ for which

(13-13) U{t,d)^L{i,d)e’^'^

form a set of unit density. Iff(z) is of genus zero and S is any given

positive 7iumber, (13-13) can be replaced by

(13-14) U{ld)^L{i,d),^.

This is proved by a similar method, L5Q3 talcing the place of

L504 in the case of a function of genus zero.

L5Q9. Let <l>{x), w{x) be real functions satisfying the conditions

(13-15) 0 < a> (a;) ^ (:r') (pc! >x'^ a),

(13-16) 0 <^(x) ^oj(kx) (x^b),

Jot some fixed h{\^k^Qo). Then there is a sequence x^^ ...

tending to infinity, such that

loga>(x’„)
(13-17)

<tnd

(13-18)

where

lim
^ (^n)

(13-19) K= lim
x * 00

log cw (x)

logx

Suppose first that A; > 1, 0 < k < 00. It is sufficient to prove that,

corresponding to each e > 0, there is a sequence
, ^2 >

- - - tending

to infinity, such that

w {ij > max {(A;-'^ -e)<f>

If this is false, then, for some value of e less than k~'^, and k,

(13-20) a)(x)^max{(A;^'^ — c)^(x),x'^”*} (x^c).

Take S so that 0 < S < e and

I = {k~‘^ — > k^ {•)j
= e(/c — 8)(e — S)

By (13-19) there is a sequence of points tending to infinity for

which <o{x)^x‘<-\
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Let X > max {a, b, c) be a point of such a sequence, and let

so that

(13-21) co(a:)^a>(X)^X«-^=

Then (13-20), (13-21) give

loj (x) {X ^x^ F),

so that

loj (x) ^ to {kx) (X^x^Y),
and

(13-22) Z«a)(X)<ca(M) (*'»-iX < F).

Let V be the smallest integer such that

Ji.

so that
^ g

vlogA:>- logX > (v— l)logA;,
K €

and vlog^” = J3|logx|l + o|^j|.

Now, by ( 13
-22 ),

cu {k'’X) ^ l'’w (X) >
so that

while

log CO (k''X) ^ V log 1 + (k — 8) logX

log (M) - j'-^ +O (1)
+

1 1

log X.

On dividing these and making X->oo, so that v-^oo, we get

-— loga>(«) (e — Slog? -) (e — S 1

a;->oo logo: (x-elogA:
j
(k-c

J

€ — 8 log I

K — S log k

(e-8 )
€(/c-8)

(/c-8) (e-8)
K — € = K,

a contradiction.
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If A; = 1 or /c = 00 the result is trivial, and the case /c = 0 is dealt

with by consideration of the functions

(x) = X^OJ {x)y
(f)^

(x) = X^(f> (x),

where A > 0 .

Let/

(

2;) be an integral function of order p and let

1

T{r)=—\ \og+\f(re^)\dd,
J 0

(13-23) iS (a, =

It is known that*
/. 1 1

logM (r) < 2̂^ ^ (^‘^)

and that T (r) is an increasing function of r, so that S (a, r) is an

increasing function of r for fixed a, and an increasing function of

a for fixed r. Hence

8 {a, kr) > (S'
(
0

,
hr) {a>0,k> 1

)

9 pkr 9 pkr

5= 7^2 T {u)ud'u,'^^^T {s/kr)\ udu
k^r^Jy/kr Jvkr

A:— 1 \/k— 1
, T,^ , ^

^ 5-

Use LgQ9 and take A; = (1 + 1/p)^. Then follows:

L510 . If f(z) is an integral function of finite order p, there is a

sequence ,
rg

> • • • tending to infinity, such that

(13-24)

and

(13-25)

log(S(a,r„)— ^ p

lim
/i ->oo logJf (rj "(/>+ 1)2/>+2‘

We are now in a position to deal with certain functions of

order 2 (3, 6 ).

W1 F

* Nevanlinna (1), 24.

6
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Theorem 18. If f(z) is an integral function of order p^2,

satisfying the condition

(13-26) n{r) — o{r^),

and r}{<p) and d are given 2>ositive numbers, the values of C for

which the inequality

(13-27) log|/(z)|>y^iTlogilf(|^|)>|^|’? (|z-^|^(Z)

is satisfied form a set of upper density greater than or equal to .

Given e > 0, let rj ,
rg , . . . be a sequence for which (in accordance

with Lgio)

(

94 TAX

^=3« = ^9),
and

lOOr V
(13-29) logJf(rJ>—

where ^*5 > A > ^,7,1 . Now write = measure of set of ^ in

1

z
I

< for which

(13-30) logl/(C)| >/ilogilf(r„),

so that

^ i'f’n) < turj logM (r„
) + (!-<) nr,fh logM (r„).

Comparing this with (13-28), we see that

t+ {l-t)h>H-e,
so that

H-h-€

As € is arbitrary, it follows from (13-29), (13-30) that the set of ^

for which

(13-31) log |/(?) I
> Alog Hf

(I ? I) > I £ I’

has upper density greater than or equal to {H— h)j{\—h).

There are now three cases to be considered, according as

l</)^2, p=t, or />< 1.

In the first case, q may be supposed greater than 1 and 8 so chosen

that 0 < 8 < q — 1.
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By LgQg, (13-11), (13-31) are simultaneously true for a set of

upper density greater than or equal to {H — h)l{\—h), and for

this set

log|/(2)| >A.iogif(| ^ |)-| ^
|i+8 (|z-^

I

^d)

>h\ogM{\t\)-{h- y,(5 ) log 1/ (I ^ I )

(13-32) =Tklogilf(Kl)>

and also

(13-33) ,klogif(K|)>Ki’'.

(13-32), (13-33) do not involve h. Hence the upper density of the

set of ^ for which they are true is greater than or equal to

(//--, A,-,)/(!--,-a-,)>Tk-

The other cases can be treated in a similar manner with the aid

of Lggg .

L5Q2 is an obvious deduction, as the hypothesis of Theorem 18

is implied by (
12 - 6

)
(the converse is false).

Theorem 18 can be extended to functions of any finite order

by a kind of change of variable process. If cr is a given positive

number less than 1 + \p, the inequality

iog|/»|>i:iogiif(KI) (|z-^l<K|-)

is satisfied for arbitrarily large values of
| ^ |

(4).



CHAPTER VI

ASYMPTOTIC PERIODS

§14. Integral functions.

The results of the present chapter, in a sense converses of

those of Chapter ii, are concerned with the order ofthe difference,

(14-1) A^iz)^fiz + a>)-f{z) (co^O),

of an integral or meromorphic function.

A^(2
)
may be identically zero, co is then a period of/(z), and

it is well known that an integral function may either have no

periods or else a single sequence kX(k= +1, + 2, ...). The values

of to for which A^(z) is “smaller” than/(z) may however form

sets of a more complicated kind, e.g. the integral function

GO ^TTXn I z

is of infinite order, but, ifp is any rational number,

B{z+p)- R{z)

is of order 1. Numbers with this property will be called asymptotic

periods. More precisely:

Definition: A number j3(4=0) is an asymptotic period of an

integral or meromorphicfunction f{z) ifA^ {z) is of lower order than

/(2 )-

This definition includes the case of a function /(z) of infinite

order. A^ (z) must then be of finite order. It is evident that, if

j8, y are asymptotic periods, then — /3, jS+ y have the same

property. The main result for integral functions is as follows:

The asymptotic periods of an integral function form a linear set

of measure zero.

Before embarking on the proof of this result we will construct

an example showing that the set may be non-enumerable (9).
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Let ifj {n) be a positive increasing function such that, for every

8 > 0, ,0 .

1

e.g. and let integer sequences (c^J, be defined by

the recurrence relations

where [x] denotes the greatest integer not exceeding x.

The set of numbers tt I ~ . I

,

(di ^2 ]

where b^, b^, ... are each either 0 or 1, will be denoted by

is a set of cardinal c, Tf x is a member of it,

I

sincZ^^o;
|

< e-’AW 1),

since
!

sinrf^o; I
= sin rrd

hr,

hn^l
, H2

1 .

'' U.-U ^,h“2

d.

n-fl

< ird^
]

+ ...[< 277 ^
^

.

Oj, dH+1

Given p > 1, the coefficients A„ (0 < 1) can be chosen so that

F{z)= S
n= 1

is an integral function of order p. If a is a member of E^,

F{z + 2oi)-F{z)\ = S - 1) e''«“

i

^ 2 S
I

sind„ a
|

A^eMn’’
1

(r=l2;|)

00 00

< 2 S < 2 S
1 1

<2e'-'+^ (r^rg),

so that Aga (z) is of order 1

.

A function of any order greater than 1 may therefore have a

non-enumerable set of asymptotic periods. It will appear that

a function of order less than 1 cannot have any, and a function
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of order 1 either none or else a sequence kX. The results may be

summed up as follows (7):

Theorem 19. If B denotes the set of asymptotic periods of an

integral functionf {z), either

(i) B is null; or

(ii) B consists of a set ofpoints kX, k= ±1, ±2, ; or

(iii) B lies on a straight line through the origin, is everywhere

dense, and has measure zero.

If

(14-2) 0
,

only case (i) is possible; and, if f{z) is of order 1, only cases (i)

and (ii).

Proof.

Lgflj . The ratio of two asymptotic periods of an integral function

is reed.

If possible, let |8, y be asymptotic periods whose ratio is not

real. It follows from the identity

(14’3) f {z -\-k^ -\-ly)=f (z) S Aj,(2 + sy)+ S Ag{z-jrly-\-t^)
s=o <=o

that, if
I

z
I

= r,

/(^)=/(2o) + SA,(zJ + SA^(z/),
s t

where Zq is in a “period parallelogram” with the origin as one

vertex, z^, Zg, ... are points inside the circle
|

z
|

= r, each in a dif-

ferent “period parallelogram ”, and the same is true of zf ,zf , ... .

In each case thenumber ofpoints does not exceed K{^,y) r. Hence

M{r)^M{\^\ + \y\) + K{^,y)r{M^{r) + M.^{r)),

where M^{r), My(r) denote the maximum moduli of Ap{z),

Ay(z), and this is evidently incompatible with the hypothesis

that Aj8(z), Ay{z) are of lower order than/ (z).

LgQ2 • L^tfiz) be an integral function ofperiod k and let

Then f{z) is a constant.
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There is no loss of generality in taking k = 2Tr. Consider the

function f{ — ilogw). This is regular and uniform in every

annulus 0 < i? ^
| |

^ E', and so can be expanded in a Laurent

series

2 S bn W~*^,
11=0 n^X

so that, writing z= —i log tv,

CO CO

f{z)= 2 2

:=F,{e-) + F.,{e-%

where (u), F2 {u) are integral functions. Write

il/^ (r) = max
|

F^ (u)
\ ,

(r) = max
|

F2 (u) |

.

1 i

r
i
uj — r

Mark the points

A(7r + i^), B(-7T + i>/), G{-n-iy), D{iT-iy)

in the z-plane and draw the circle circumscribing ABGD, i.e.

the circle of centre the origin, radius V

(

77^ + y^). Now
00 00

max
[

F^ (e’
2
) |

= l/i (e«), max
]

J’g (e-'-*)
|
< 2

| |

e-«w < 2
|

6,J

,

VI) CD 1 1

SO that, denoting by M (r) the maximum modulus of/(z).

. CO

(e*')<i/(V772 + y^) + 2
1

6
,,^ |,

1

and so, by (14-4),

i.e.

(14-5)

y00 ^

lim
r~>co

logr

This is only possible if F-^ {u) is a constant, the expression on the

left of (14*5) being infinite if F^ («) is transcendental, and N if

F^ {u) is a polynomial of degree N. Similarly F2 {u) is a constant.

We can now deal with functions of order 1 or less. Suppose

first that (14-2) is satisfied. If there is an asymptotic period j8.
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A|
3 (2) must be of order (t< 1, and so, by Theorem 3, there is a

function /i (z) of order a such that

A)S(2)=/i(2+ ^)-/i(2)-

/2 (z) =/ (z) —/i (z) is therefore an integral function of period

jS and

Lgo2 shows that (z) is a constant, and this is imj)ossible since

/i (z) is of lower order than/(2 ). The contradiction implies that

/ (z) has no asymptotic periods.

Next suppose that/(2
)
is of order 1, but not of minimum type.

Ifthere are asymptotic periods one ofthem may be taken to be 2rT.

As before,
f{z)=i\{z)+h{z),

where (z) is of order 1 and has j)eriod 27t, and (z) is of order

ff < 1; and, as in

/2 (Z) = (*0 + 2K 6^'““)-

]

/2 (z) is not a constant, so not all the terms of the series are

identically zero. Let N be the rank of the first that is not. Now,
if is any other asymptotic period.

S (a„ - 1) =/2 (z + (z)

1

= function of order less than 1.

This can only be so if every term in the series is identically zero,

and so

Thus P = 2iTkjN = Xk, where k is an integer.

LgQ3 . Let E be a non-null linear set of points with the property

that if X, y are any members of E, —x,x-{-y are also members. Then

either (a) E consists ofa set ofpoints kX, or (6) E is everywhere dense.

If E is not everywhere dense, let (a, /8) be an interval not con-

taining a member of E. Let a' be the upper bound of members of

E not greater than a, and j8' the lower bound of members of E
not less than j8. Then there are no members of E inside the
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interval (jS', 2/S' — a'). For suppose that such a number, x, exists.

As y8' is a lower bound of members of E there is a member y
satisfying the inequality

p'^y<l{x+ ^').

By the addition property 2y — a; is a member of E, and

a' < 2^' —x^2y—x< ,

giving a contradiction. Similarly there are no members of E
inside any interval

— cc'), +
and so E consists of the points + k{^' — <x'), k= 0, ± 1, .... As

the origin is a member of E it is evident that this set is of the

form kX, k = 0 , +1, ±2, ....

The next lemma contains the kernel of the argument. Let

F {x, y) be a complex function of two real variables, defined in

{
— oo<x<oo,y^a). Let its order be defined to bo

i-,log^y)
logy

ii{f(y)= max \F{x,y)\),

-P max
I

F(a:,y)-F(a;',i/)
I)

-cn<x,x < oo

and let y be called excej>tio7ial if F (;x + y,y) — F (x, y) is of order

less than p.

Leo4 . If F{x,y), of order p, is continuous and periodic vnth

respect to x and if

(14-6) lim (<^ iy) = max
|

F {x, y) - F {x'
, y) |

)

y-^ 00 y -cn<x,x' <<X)

the excejitional numbers form a set of measure zero.

Let {fji < p) denote the set of numbers y such that

F{x + y, y)-F{x,y)

is of order less than or equal to p,. The sets form an increasing

sequence whose limit is B, the set of all exceptional numbers.

Let A be a “large” positive integer and let p<^<c/.<p.

There is a sequence yi,y2,, • . . tending to oo, such that

(14-7) 9i(2/^,)>expyj,“ (p=l,2,...),

and also

(14-8) ^/>y/+A+p+l.
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Corresponding to y^, a, member of this sequence, let
,
x^, be

points of (0, 1), where I is the period of F {x, y), for which

\F{xi, yj,) -F(x2 ,yf,)\=<l> {y.p).

Mark in the i^-plane the values of F {x, y) corresponding to

values of {x, y^), O^x^l. The resulting curve is continuous and

closed, since F (x, y) has period I, and is contained in the circle of

centre F {x, y^,), radius {y^,). Now divide this circle into annuli

by drawing concentric circles of radii S(f> {yp)jS, {s=l,2, S—l)^

where 8= 2^+^*, and denote by the set of points x for which the

jP-curve lies in the «th annulus. To make matters precise, let Eg

consist of the points x in (0, 1) for which

{y^,) ^\F{Xi,yp)-F {x,
|

< s8-^
<f> (y^)

{s=l,2,...,S-l),

Evidently mE^^ + mE^ + . . . + mEf. = I,

so that there is at least one value of h for which

mEj^ ^ 18^^.

As the ii’-curve is continuous and passes from the centre of the

circle of radius
(f> (y^) to its circumference, it must cut the con-

centric circle of radius {k — 1) (y^). That is to say, there is a

point Ip in (0, 1) such that

\F{$p, yp) -F{x^, yp) \

= {k- 1 )
8-'^

4> {yp).

On drawing a diagram it is evident that, if is a point of

(s 4= k), then
I I

^ ^ ^y^^^

and hence the values of x in (0, 1) for which this inequality is

satisfied form a set E''^^ of measure not less than {\ — 8~'^)l. As

F {x,y) has period I this means that the values of t in (0, 1) for

\F(i„y,)-F (f„ + t.y„)\>

form a set Tp of measure not less than (1 — 8~^) 1. Let

T = Ti TgTg...,

so that

1 _ 2 2-i’-^h= (l-2-^)Z.
33=1 /
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It will now be shown that the sets T, have no members in

common.
If TB^ is not null, let y be a member of it. Then, for all values

oip,

^oiyp)== max \F(x + y,yi,)-F(x,yp)\
~CO<X<CO

>\^{ip + y> Vp) - F {$,> , Vi,) I

> <j>{yp)> bV-i exp > expy/

,

by (14-8), and this is false, since it implies that

log^

whereas F {x + y,^J) — F (x, y) is of order less than or equal to y.

Hence the set TB^ is null, and so if B* denotes the part of B^ in

the interval (0, 1), it follows by (14-9) that

mB* < 2“X

As N is independent of I, y, this implies that

mB* — 0,

and so mB,. — 0

for each y. Hence, finally,

mB = 0.

The condition (14-6) is essential, e.g. every number is exceptional

with respect to the function

F {x,y) = e‘'^ -\-e*'^mnx {y<X),

but of course we have assumed very little about F {x, y), not even

continuity with respect to y. The remaining lemma enables us to

dispense with (14'6) in the case of an integral function.

Lgo5 . Let fi{z), fiiz) be periodic integral functions of order p,

whose periods co, co/y are real, and let

<J{^) =/i (
2)-/2 (

3 )-

If, for some a<p,

(14-10) |gr(a; + iy)|<Zei2'i" {\y\>a),

where K is independent of then /x is a rational number.
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p may be oo. As in Lgo2 ,
take to = 277 so that

00 00

(14-11) /i(2)= S S
W=0 71=1

(14-12) ^ 2
7i=0 ri=l

As /j (z) is of order p at least one of the series in
(
14- 1 1), say the

first, is an integral function of order p.

Now, if p, is irrational, the exponentials in (14-11), (14-12) are

all distinct, and so

1

a.„ = hm ^ ^ni^-c-Dg
iy'^

T->a) ^7 J ~T
and thus, ify^O,

( 14-13) I I

e^'-y <^lim j*
\

g{t + iy) \dt<,0{y),

where O (y) = max \g{x± iy)
\

.

— 00 <X< 00

By (14-10),

(14-14) 0{y)<Key'^ {y'^a).

Now the function

F {w) = 2 {w = Re^'l')

71=0

is an integral function. Let A {R) denote its maximum modulus.

y its order, and

A{R)= max |i^(«’)|,

I
m;

I

-= H

a (ii) = max
I

a„
j

/?"

71>0

its maximum term. (14-13) shows that

(14-15) o,(ey)^G{y) (y^O).

Moreover, if M (r) denotes the maximum modulus of F (e’^)

for
I

z
I

= r.

(14-16) Miy)^A{ey) {y>0).

ForM (y) is the maximum of
|

F {w)
|

on the curve

j5= g-J/sln0, ^ = ycosd (0^0^ 277)

in the w-plane, and this lies inside the curve

R= ey.
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Now, if y is finite,*

(14-17)
logcc jr)

logA(r)
as r -» 00

,

and so, by (14-15), (14-16),

lim
---logjtffe)

1 .

Moreover lim -p.
„_^00 logy

Hence lim
//->co

loglog G (f/)

logy
>p> a,

and this contradicts (14-14).

Again, if y is infinite,

f

(14-18)

whence, by (14-15),

,^loglog.(B)_
logi^

y-^co y
= 00

,

which likewise contradicts (14-14).

The proof of the main theorem can now be completed. Let jS

be an asymptotic period, supposed real. As in LgQ2 5

/(z)=/l(z) +/2(2)>

where /g (z) has period j8 and is of order p (possibly oo) and/^ (z)

is of order a less than p. Write

^ (y )
= max |/2 (* + iy)-/2 (*' + »y)l-

0 < a-, x' < ^

It may be that

(14-19) {\y\>a)

for some r<p. In this case every other asymptotic period is a

rational multiple of )S. For, if y is any other,

h{z)=fz{z)+g(z),

* Valiron (1 ), 32.

f Cf. Valiron
(
1 ). (14*18) is not explicitly stated but follows readily from

equation (2-9) on p. 31.
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where (z) has period y and is of order p and g (z) is of order

a <p. We may suppose that r in (14-19) is greater than a, u'.

Then, when
\ y\ ^b,

(14-20) (f>*{y)= max
|A (a; + i?/) -/s (a;' + i?/)

I
< 2el

0 ^ x,x' <Y
For, if this is false, then eorresponding to a given value of K,

numbers x,x',y can be found such that

x' <max(/3, y), \y\>K,

and \y{x + iy)-g{x' + iy)\

^ IA (^ + il/) -h (*' + W)\-\h{^ + W) -A (^' + iy)
I

> e'
2^

Hence, writing Mq (r) = max \g{z)\,
\z\’=r

2dfo(2
\

y\)^\g{x + iy)\ + \g(:x' + iy)
\

and this is impossible if K is sufficiently large, as the order of

g{z) does not exceed o-'.

(14*20) being thus established it follows that, if x, .r' are any

real numbers, then

\g{x + iy) -g{x'-\- iy)
1
<

|A (^ + W) “A + %) I

•

+ |A(^’ + ^»-A(^' + *«/)i

and so, if —co<x<od,

|gr(a; + ^^/)|<|^7(^»|+3e>2'l’

{\y\^d),
since g (z) is of order a' < t.

It now follows from Lgos that y is a rational multiple of j8.

If (14-19) is false for every T<p, (14-6) is satisfied either for

F {x, y) =/2 {x+ iy) or for F {x, y) {x — iy), say for the former.

Let y be another asymptotic period. Then, if O^x^

I
F(x + y,y)-F(x,y)\ = \f2 (x + y + iy)-f2

{x + iy)
|

= \gix + y + iy)-gix + iy)\

< 2Mq {2y) < exp y” '^^,

and this is true for all x, as F {x + ^,y) = F {x, y). Hence y is an

exceptional number, and we can apply Ljq^ .
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§15. Meromorphic functions.

The main result for meromorphic functions is as follows (10):

Theorem 20. Let B denote the set of asymptotic periods of a

meromorphic function of order p, and let k denote the exponent of

convergence ofthegmles, so that K^p. Then

() if K = p, B is an enumerable set

;

() if K<p, B lies on a straight line through the origin and has

measure zero.

The proof of (a) is immediate.

The order of (z) is not inferior to the exponent ofconvergence

of its poles. Now these consist of the poles b^, b^, ... of /(z)

together with the poles b^ — b^ — ... of/(z + jS), and so have

exponent of convergence p, unless some of the poles cancel out.

Thus )3 cannot be an asymptotic period unless it is of the form

bp — bq. It follows that B must be enumerable. It should be

noted that not every number of the form bp — b^ need be an

asymptotic period.

As regards descriptive properties it can be shown by the

methods of that there are six possibilities

:

(a) B is null;

()3) B consists of a set of points kco, ^’= + 1, ± 2, ...;

(y) B lies on a straight line through the origin and is everywhere

dense on it;

(8) B consists of a set of points kw + leu', where cu'jw is not real

;

(e) B lies on a set of lines y — mx + kc, k = 0, ±1, ±2, and

is everywhere dense on each of them;

(^) B is everywhere dense in the plane.

All these possibihties are realised among functions of any positive

order, e.g. if c = (0 < p < 1) and

CO 4”

(
15 - 1 ) <f>(z)= ^ n , 1 -

. k hin
^ _

2” 2”

'

</>' {z)j(f>{z) is a meromorphic function of order p for which every
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number of the form 2~" {k + li), where k, I, n are integers, is an

asymptotic period.

The proof of (6) is much more difficult.

LgQg. Let f{z) be an integral function of finite order p. Then,

corresponding to each number a> p there is a number d„ such that

(15-2) ff + {d>d,),
JjA A

whereA is any domain in thecomplex plane, 8 {A
) its area,

,
rg , . .

.

the moduli of the zeros of f(z), the summation is taken over the

zeros inside or on the boundary of A {multiple zeros being counted

multiply), and

d= min| 2 |,
D= max| 2

|

{zinA).

The function f{z) is of the form

P (z) exp {kiZ+ k2Z^+ ... + k^z^),

where P {z) is a canonical product and s^p; so that, writing

|2l=r,

log+ 1/(2) l“^<log+
1

P(z) |-i+
1
ki \r+ ... +

I 1

P.

Now

(15-3) JJ^(|A;i|r+... + |A;g|r*)d,S<JZ)<^;S(^) {d^df).

i'^N ^ kr < ,

Moreover*

(15-4) log
I

P (z)
I

> — iCJ + log n
1

where A; > 1, and
'n(x) rP+^

1-

(15-5) =j:
dx < rP+^ {r > rf).

Iq x + r

p being the genus of P (z). (15-4), (15-5) give

log+
I

P (z)
I

-1 < P/ + S log+ r„ + S log+
I

z - aJ
1 1

N
< + 2 log+

1

z -
I

-1 (r > rf),
1

and so

(15*6) ff log+lP(^)l“irf>S<ii)^>S(^) + sff
jjA IJJA

* Valiron (1 ), 53.
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Nowsurround each zero with a circle C'„ofradiusr~*(A> |ct),

and let A be the domain A with C„ excluded. Then

i log+
I

z - ^ A log r„ . ^ (4),

and, if > 1,

r r rrn~^ /•27r

JJ
log+

I

z — a.„
I

I 1 \ogu~^udud&

-='!r(h\ogr^ + \)r-^'‘<r-’’ {d^dj').

On combining these inequalities with (15-3) and (15-6) we get

the result stated.

Now take the case (6). /(z) is of the form

/(2) =
h^)

g{zy

where g (z) is a canonical product of order K<p and Ji (z) is an

integral function of order p. If ^ is an asymptotic period,

^ 9{z)g{z + ^)

is of lower order than/(z), and so

F{z)^h{z + ^)g{z)-g{z^-^)h{z)

is of order A<p.

Suppose, if possible, that y is an asymptotic period which does

not he on the line joining 0, Then

G{z) = h{z + y)g{z)-g{z + y)h(z)

is of order p.<p.

Let or be chosen so that

(15'7) K,X,pb<(T<p,

and let d^ be the associated number when LgQg is applied to g (z).

Moreover, let Dq ^ d„ be chosen so that

\g{z)\, \F{z)\, |G'(z)|<e'-" {r^D,).

7WI F
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The identity (14-3) shows that, if > Z)q and z is a point in the

annulus F (Dq < |

z
|
< D), then

/ (
2

) =/ (2o) + 2 G (z,) {g (zj g {z, + y)}~i

+ Si’(z/){^(z/)^(z/ + ^)}-\

where Zq is in a “period parallelogram” or cell (formed with

periods y) intersected by the circle |z|=Dq and Zy, Zg,

Zy
,
Zg', ... are points “conjugate” to z in different cells in the

annulus. The number of these points does not exceed ^D,

where JCij y
depends only on y. Hence

1 /(2 ) I
< |/(2o) I

+ A'^,y max
I

sr(z„“) |-2,

where Zy", Zg", ... are all the points “conjugate” to z in the

annulus.

On making use of the inequalities*

log+ (ai ag . . . a
) ^ 2 log+ a^.

,

1

a Q

log+ (2 a,) < 2 log a* + log q,
1 1

this gives

(15-8) log+
1 (

2
) I
< log+

1 S' (
2
) I
+ log+ |/(z)

I

< log+
1

gf
(
2
) I
+ log+

I

h (Zo)
I

+ log+
I
g (zo)

|

+log%y+ logZ> + D-

+ 2 log+ max
| g (z/')

|
+ log 2.

Let Z denote the point (or one of the points) z^" for which

i y i^e") is a maximum. As z moves about in a cell, Z will jump
from one cell to another, and as z moves over a whole cell, Z will

move over a number of disconnected domains Ay, A 2 , ...,A;i.in

different cells. These can be fitted together, like pieces of a jig-saw

puzzle, to make a whole cell, so

8 (Aj) -f 8 (Ag) + ... + 8 (A*) = area of cell = 8.

A single Ag may consist of several disconnected parts in the

same ceU.

* Nevanlinna (1), 14.
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Now log+
I

h (zo)
I
< < ID- {D ^ Dj),

so that (15-7), (15-8) give

log+ \h{z)
\
^ 3log+

1 g (Z) j-i + 2D- {D ^ D^),

and, if G is any cell in the annulus F,

ff log+|/i(z)|diSf^3 S ff log+|(/(Z)l-id;S' + 2i)''^\

On applying Lgoc this gives (writing
|
6„

|

=rj

f f log+ \h(z)ldS^3E h r-- + D-S jl + 2D-

8

JJC j

00

^12 2 r-^+5SD^ < KD^,
ri— 1

the factor 12 being arrived at by observing that a pole may be

on the boundaries of four different domains if it happens to

be the corner of a cell. Hence

f log+|;i(z)|
J J V

d8<KD-TT{D^-D^^) {D>D,),

and so

(logD)-i log Jj,log+ I

h (z) \d8 a <p,

and this contradicts L^^q. Hence the assumption that y is not

coUinear with 0 and )3 is false, and so either B is null or B lies on

a straight line through the origin.

We may therefore suppose that all the asymptotic periods are

real, and it remains to prove that they form a set ofmeasure zero.

By subtracting a suitable rational function, if necessary, the

poles in
|

2
:

|

3 may be removed. The number of the remaining

poles in
|

2
:

|

< r satisfies an inequality

p{r)^r^ (A^l) (all r).

Surround each pole with a circle of radius
| p^ |

where h

will be chosen later, and move the circles a distance t{0<t^l)

to the left, parallel to the real axis. Let become CJ (t). It is

evident from a diagram that the numbers t for which (t) has

a point in common with form a set of measure less than or

7-2
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equal to 2
| |

+ 2
j |

so (t) will have a point in common
with one or more of 6\, Cg, ... for numbers t forming a set of

measure

^ {2bi|-'‘+ 2|p^l-'^},
n=l

where is the last integer such that

bvj -
1 PvJ''* - bi 1

-
1 i>i < 1 •

Thus bvj^3+|pil,
and

so that jLti< S {4|pi|-*}^4(3+|pi|)^

Writing h= A{D+l), where D^\, this gives

^ 4{3 |pi +
I Pi ^ 4{2

I Pi < 4 . 2 I Pi |-».

{t), Cg' {t), ... can be discussed similarly and it follows that

the numbers ^ in 0 < i < 1 for which some O,/ {t) has a point in

common with some (7^ form a set E of measure not exceeding

8S |p„ 1“^. By choice of D this can be made smaller than any

given positive number 8.

With this choice of D, and h — A{D -\-\), express/

(

2
)
in normal

f”” _pw
Xz-b^f^...{z-bk)^k

/(z) = 9'(2) + S -
,A
+«(^)

We are supposing that K<p, so p = max(a,Ti). There are two

cases to consider:

(i) Ti < p. Then a= p and f(z) = g (z) + a function of order less

than p. The asymptotic periods of/

(

2
)
are therefore identical with

those of g (
2 ) and it follows from Theorem 19 that the latter form

a set of measure zero.

(ii) Ti= p. Unless t belongs to E,

+ S

-S

(
P{z + t)

i(2 + «-6o)^'>-" i^ + t-bkY
+ Q (z + i)

^ +
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will be in normal form, and so of order not less than r^ — p. The
asymptotic periods in 0 < ^ < 1 are therefore members of E and so

form a set of measure not exceeding 8. As S is arbitrary, they

form a set of measure zero.

The analogy between integral functions and meromorphic

functions for which K<p suggests that, if (}^K<p<\, there

should be no asymptotic periods, and, ifO^K:<p=l, either none

or else a single sequence kw. This is, in fact, the case.

The results of this chapter throw a certain amount of light on

the nature of periodicity. The single periodicity of sin z and the

double periodicity of sn z appear at first sight to be phenomena

ofmuch the same kind; but ifwe enlarge the concept byincluding

asymptotic periodicity it becomes evident that they belong to

classes of phenomena which differ in almost every respect. The

asymptotic periodicity of an integral function, or a meromorphic

function for which «: < p, is a Diophantine phenomenon limited

to functions of order one or more; the asymptotic periods may
be non-enumerable but are restricted to a line. In the case of

a meromorphic function for which k = p, on the other hand, the

phenomenon is essentially connected with the poles and occurs

among functions of any positive order; the asymptotic periods

form an enumerable set but may be everywhere dense in the

plane.
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